Progenitors from the central nervous system drive neurogenesis in cancer
- PMID: 31092925
- DOI: 10.1038/s41586-019-1219-y
Progenitors from the central nervous system drive neurogenesis in cancer
Erratum in
-
Publisher Correction: Progenitors from the central nervous system drive neurogenesis in cancer.Nature. 2020 Jan;577(7792):E10. doi: 10.1038/s41586-019-1837-4. Nature. 2020. PMID: 31911658
Abstract
Autonomic nerve fibres in the tumour microenvironment regulate cancer initiation and dissemination, but how nerves emerge in tumours is currently unknown. Here we show that neural progenitors from the central nervous system that express doublecortin (DCX+) infiltrate prostate tumours and metastases, in which they initiate neurogenesis. In mouse models of prostate cancer, oscillations of DCX+ neural progenitors in the subventricular zone-a neurogenic area of the central nervous system-are associated with disruption of the blood-brain barrier, and with the egress of DCX+ cells into the circulation. These cells then infiltrate and reside in the tumour, and can generate new adrenergic neurons. Selective genetic depletion of DCX+ cells inhibits the early phases of tumour development in our mouse models of prostate cancer, whereas transplantation of DCX+ neural progenitors promotes tumour growth and metastasis. In humans, the density of DCX+ neural progenitors is strongly associated with the aggressiveness and recurrence of prostate adenocarcinoma. These results reveal a unique crosstalk between the central nervous system and prostate tumours, and indicate neural targets for the treatment of cancer.
Comment in
-
Nervous tumours.Nat Rev Cancer. 2019 Jul;19(7):366. doi: 10.1038/s41568-019-0159-z. Nat Rev Cancer. 2019. PMID: 31138904 No abstract available.
-
Nerve cells from the brain invade prostate tumours.Nature. 2019 May;569(7758):637-638. doi: 10.1038/d41586-019-01461-7. Nature. 2019. PMID: 31138915 No abstract available.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
