How Does the Evolution of Universal Ecological Traits Affect Population Size? Lessons from Simple Models
- PMID: 31094600
- DOI: 10.1086/703155
How Does the Evolution of Universal Ecological Traits Affect Population Size? Lessons from Simple Models
Abstract
This article argues that adaptive evolutionary change in a consumer species should frequently decrease (and maladaptive change should increase) population size, producing adaptive decline. This conclusion is based on analysis of multiple consumer-resource models that examine evolutionary change in consumer traits affecting the universal ecological parameters of attack rate, conversion efficiency, and mortality. Two scenarios are investigated. In one, evolutionary equilibrium is initially maintained by opposing effects on the attack rate and other growth rate parameters; the environment or trait is perturbed, and the trait then evolves to a new (or back to a previous) equilibrium. Here evolution exhibits adaptive decline in up to one-half of all cases. The other scenario assumes a genetic perturbation having purely fitness-increasing effects. Here adaptive decline in the consumer requires that the resource be self-reproducing and overexploited and requires a sufficient increase in the attack rate. However, if the resource exhibits adaptive defense via behavior or evolution, adaptive decline may characterize consumer traits affecting all parameters. Favorable environmental change producing parameter shifts similar to those produced by adaptive evolution has similar counterintuitive effects on consumer population size. Many different food web models have already been shown to exhibit such counterintuitive changes in some species.
Keywords: adaptation; coevolution; consumer-resource system; overexploitation; population size.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources