Resistance Gene-Directed Genome Mining of 50 Aspergillus Species
- PMID: 31098395
- PMCID: PMC6517689
- DOI: 10.1128/mSystems.00085-19
Resistance Gene-Directed Genome Mining of 50 Aspergillus Species
Abstract
Fungal secondary metabolites are a rich source of valuable natural products, and genome sequencing has revealed a proliferation of predicted biosynthetic gene clusters in the genomes. However, it is currently an unfeasible task to characterize all biosynthetic gene clusters and to identify possible uses of the compounds. Therefore, a rational approach is needed to identify a short list of gene clusters responsible for producing valuable compounds. To this end, several bioactive clusters include a resistance gene, which is a paralog of the target gene inhibited by the compound. This mechanism can be used to identify these clusters. We have developed the FRIGG (fungal resistance gene-directed genome mining) pipeline for identifying this type of biosynthetic gene cluster based on homology patterns of the cluster genes. In this work, the FRIGG pipeline was run using 51 Aspergillus and Penicillium genomes, identifying 72 unique families of putative resistance genes. The pipeline also identified the previously characterized resistance gene inpE from the fellutamide B cluster, thereby validating the approach. We have successfully developed an approach to identify putative valuable bioactive clusters based on a specific resistance mechanism. This approach will be highly useful as an ever-increasing amount of genomic data becomes available; the art of identifying and selecting the right clusters producing novel valuable compounds will only become more crucial. IMPORTANCE Species belonging to the Aspergillus genus are known to produce a large number of secondary metabolites; some of these compounds are used as pharmaceuticals, such as penicillin, cyclosporine, and statin. With whole-genome sequencing, it became apparent that the genetic potential for secondary metabolite production is much larger than expected. As an increasing number of species are whole-genome sequenced, thousands of secondary metabolite genes are predicted, and the question of how to selectively identify novel bioactive compounds from this information arises. To address this question, we have created a pipeline to predict genes involved in the production of bioactive compounds based on a resistance gene hypothesis approach.
Keywords: Aspergillus; bioactive compounds; comparative genomics; fungal; genome mining; genomes; natural products; resistance; secondary metabolism.
Figures



References
-
- Galagan JE, Calvo SE, Cuomo C, Ma L-J, Wortman JR, Batzoglou S, Lee S-I, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115. doi:10.1038/nature04341. - DOI - PubMed
-
- Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama JI, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, et al. . 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161. doi:10.1038/nature04300. - DOI - PubMed
-
- Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latgé J-P, Li W, Lord A, Lu C, et al. . 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156. doi:10.1038/nature04332. - DOI - PubMed
-
- Kjærbølling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kuo A, Bowyer P, Matsuda Y, Mondo S, Lyhne EK, Kogle ME, Clum A, Lipzen A, Salamov A, Ngan CY, Daum C, Chiniquy J, Barry K, LaButti K, Haridas S, Simmons BA, Magnuson JK, Mortensen UH, Larsen TO, Grigoriev IV, Baker SE, Andersen MR. 2018. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proc Natl Acad Sci U S A 115:E753–E761. doi:10.1073/pnas.1715954115. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Research Materials