Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug:182:1-7.
doi: 10.1016/j.biosystems.2019.05.005. Epub 2019 May 14.

Towards an evolvable cancer treatment simulator

Affiliations

Towards an evolvable cancer treatment simulator

Richard J Preen et al. Biosystems. 2019 Aug.

Abstract

The use of high-fidelity computational simulations promises to enable high-throughput hypothesis testing and optimisation of cancer therapies. However, increasing realism comes at the cost of increasing computational requirements. This article explores the use of surrogate-assisted evolutionary algorithms to optimise the targeted delivery of a therapeutic compound to cancerous tumour cells with the multicellular simulator, PhysiCell. The use of both Gaussian process models and multi-layer perceptron neural network surrogate models are investigated. We find that evolutionary algorithms are able to effectively explore the parameter space of biophysical properties within the agent-based simulations, minimising the resulting number of cancerous cells after a period of simulated treatment. Both model-assisted algorithms are found to outperform a standard evolutionary algorithm, demonstrating their ability to perform a more effective search within the very small evaluation budget. This represents the first use of efficient evolutionary algorithms within a high-throughput multicellular computing approach to find therapeutic design optima that maximise tumour regression.

Keywords: Agent-based model; Cancer; Evolutionary algorithm; High-throughput computing; PhysiCell; Surrogate modelling.

PubMed Disclaimer

MeSH terms

Substances