Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Jul 15:402:30-39.
doi: 10.1016/j.jns.2019.04.038. Epub 2019 Apr 30.

Do acute stroke patients develop hypocapnia? A systematic review and meta-analysis

Affiliations
Meta-Analysis

Do acute stroke patients develop hypocapnia? A systematic review and meta-analysis

Angela S M Salinet et al. J Neurol Sci. .

Abstract

Purpose: Carbon dioxide (CO2) is a potent cerebral vasomotor agent. Despite reduction in CO2 levels (hypocapnia) being described in several acute diseases, there is no clear data on baseline CO2 values in acute stroke. The aim of the study was to systematically assess CO2 levels in acute stroke.

Material and methods: Four online databases, Web of Science, MEDLINE, EMBASE and CENTRAL, were searched for articles that described either partial pressure of arterial CO2 (PaCO2) and end-tidal CO2 (EtCO2) in acute stroke.

Results: After screening, based on predefined inclusion and exclusion criteria, 20 studies were retained. There were 5 studies in intracerebral hemorrhage and 15 in ischemic stroke, totalling 660 stroke participants. Acute stroke was associated with a significant decrease in CO2 levels compared to controls. Cerebral haemodynamic studies using transcranial Doppler ultrasonography demonstrated a significant reduction in cerebral blood flow velocities and cerebral autoregulation in acute stroke patients.

Conclusion: The evidence from this review suggests that acute stroke patients are significantly more likely than controls to be hypocapnic, supporting the value of routine CO2 assessment in the acute stroke setting. Further studies are required in order to evaluate the clinical impact of these findings.

Keywords: Acute stroke; Carbon dioxide; Cerebral hemodynamics; Hypocapnia; Meta regression; Systematic review.

PubMed Disclaimer

LinkOut - more resources