Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep:287:121443.
doi: 10.1016/j.biortech.2019.121443. Epub 2019 May 8.

Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes

Affiliations

Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes

Oscar Fernando Herrera Adarme et al. Bioresour Technol. 2019 Sep.

Abstract

In this study the anaerobic co-digestion (AcD) of sugarcane biorefinery by-products, i.e. hemicelluloses hydrolysate (HH) (obtained by hydrothermal pretreatment of sugarcane bagasse), vinasse, yeast extract (YE) and sugarcane bagasse fly ashes (SBFA), was optimized by means of biochemical methane potential experiments. The best experimental conditions of AcD (25-75% HH-to-vinasse mixture ratio; 1.0 g L-1 YE; 15 g L-1 SBFA and 100-0% HH-to-Vinasse; 1.5 g L-1 YE; 45 g L-1 SBFA) led to the production of 0.279 and 0.267 Nm3 of CH4 per kg of chemical oxygen demand (COD) with an energy surplus of 0.43 and 0.34 MJ kg SB-1, respectively. Adsorption experiments using SBFA were carried out and showed this residue could adsorb up to 61.71 and 17.32 mg g-1 of 5-hydroxymethyl-2-furfuraldehyde and 2-furfuraldehyde, thereby reducing toxicity and improving biogas production.

Keywords: Anaerobic co-digestion; Biogas; Hemicelluloses hydrolysate; Sugarcane bagasse fly ash; Sustainable biorefinery; Vinasse.

PubMed Disclaimer

LinkOut - more resources