Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;79(10):1180-1190.
doi: 10.1002/pros.23836. Epub 2019 May 18.

IL-8 protects prostate cancer cells from GSK-3β-induced oxidative stress by activating the mTOR signaling pathway

Affiliations

IL-8 protects prostate cancer cells from GSK-3β-induced oxidative stress by activating the mTOR signaling pathway

Yi Sun et al. Prostate. 2019 Jul.

Erratum in

Abstract

Introduction: Both oxidative stress and inflammation play important roles in prostate cancer cell apoptosis or proliferation; however, the mechanisms underlying these processes remain unclear. Thus, we selected interleukin-8 (IL-8) as the bridge between inflammation and cancer cell oxidative stress-induced death and aimed to confirm its connection with mTOR and Glycogen synthase kinase-3 beta (GSK-3β).

Methods: We overexpressed GSK-3β and observed its effect on reactive oxygen species (ROS) and oxidative stress-induced cell death. IL-8 was then upregulated or downregulated to determine its impact on preventing cell damage due to GSK-3β-induced oxidative stress. In addition, we overexpressed or knocked down mTOR to confirm its role in this process. Real-time PCR, Western blotting, transcription, Cell Counting Kit 8 (CCK-8), and flow cytometry analyses were performed in addition to the use of other techniques.

Results: IL-8 promotes prostate cancer cell proliferation and decreases apoptosis, whereas GSK-3β activates the caspase-3 signaling pathway by increasing ROS and thereby induces oxidative stress-mediated cell death. In addition, mTOR can also decrease activation of the caspase-3 signaling pathway by inhibiting GSK-3 and thus decreasing ROS production. Moreover, the inhibitory effect of IL-8 on GSK-3β occurs through the regulation of mTOR.

Conclusion: The results of this study highlight the importance of GSK-3β, which increases the production of ROS and thereby induces oxidative stress in tumor cells, whereas IL-8 and mTOR attenuate oxidative stress to protect prostate cancer cells through inhibition of GSK-3β.

Keywords: GSK-3β; IL-8; apoptosis; mTOR; oxidative stress.

PubMed Disclaimer

Publication types

MeSH terms