Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 24:6:108.
doi: 10.3389/fvets.2019.00108. eCollection 2019.

Impact of a Bacillus Direct-Fed Microbial on Growth Performance, Intestinal Barrier Integrity, Necrotic Enteritis Lesions, and Ileal Microbiota in Broiler Chickens Using a Laboratory Challenge Model

Affiliations

Impact of a Bacillus Direct-Fed Microbial on Growth Performance, Intestinal Barrier Integrity, Necrotic Enteritis Lesions, and Ileal Microbiota in Broiler Chickens Using a Laboratory Challenge Model

Daniel Hernandez-Patlan et al. Front Vet Sci. .

Abstract

Decreases in the use of antibiotics and anticoccidials in the poultry industry have risen the appearance of necrotic enteritis (NE). The purpose of this study was to evaluate the effect of a Bacillus direct-fed microbial (DFM) on growth performance, intestinal integrity, NE lesions and ileal microbiota using a previously established NE-challenged model. At day-of-hatch, chicks were randomly assigned to three different groups: Negative control (NC), Positive control (PC) challenged with Salmonella Typhimurium (day 1), Eimeria maxima (EM, day 13) and Clostridium perfringens (CP, day 18-19), and Bacillus-DFM group (DFM) challenged as the PC. Body weight (BW) and body weight gain (BWG) were measured weekly. Total feed intake (FI) and feed conversion ratio (FCR) were evaluated at day 21. Liver samples were collected to assess bacterial translocation and blood samples were used to measure superoxide dismutase (SOD) and fluorescein isothiocyanate-dextran (FITC-d). Intestinal contents were obtained for determination of total IgA and microbiota analysis. NE lesion scores (LS) were performed at day 21. Chickens consuming the DFM significantly improved BW and had a numerically more efficient FCR compared to PC at day 21. Additionally, there were no significant differences in FCR between the DFM group and NC. Furthermore, the DFM group showed significant reductions in LS, IgA and FITC-d levels compared to the PC. However, there were no significant differences in SOD between the groups. The microbiota analysis indicated that the phylum Proteobacteria was significantly reduced in the DFM group in comparison to PC. At the genus level, Clostridium, Turicibacter, Enterococcus, and Streptococcus were reduced, whereas, Lactobacillus and Bacillus were increased in the DFM group as compared to PC (p < 0.05). Likewise, the DFM significantly reduced CP as compared to PC. In contrary, no significant differences were observed in bacterial composition between NC vs. DFM. In addition, beta diversity showed significant differences in the microbial community structure between NC vs. PC, and PC vs. DFM. These results suggest that the dietary inclusion of a selected DFM could mitigate the complex negative impacts caused by NE possibly through mechanism(s) that might involve modulation of the gut microbiota.

Keywords: Bacillus; broiler chickens; direct-fed microbial; ileal microbiota; necrotic enteritis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Relative abundance of different phyla (A), families (B) and genera (C) in different treatment groups (NC, PC, and DFM). NA refers to those reads that were not assigned to the respective taxonomic levels.
Figure 2
Figure 2
Alpha diversity of the three different groups (NC, PC, and the DFM group) as measured by Shannon Index. No significant difference was observed among three groups (ANOVA, p > 0.05).
Figure 3
Figure 3
PCoA plot showing difference in microbial community structure between NC and PC (ANOSIM; R = 0.40 and p < 0.05).
Figure 4
Figure 4
PCoA plot showing difference in microbial community structure between the DFM group and PC (ANOSIM; R = 0.73 and p < 0.01).
Figure 5
Figure 5
PCoA plot showing no difference in microbial community structure between the DFM group and NC (ANOSIM; R = −0.02 and p > 0.05).

Similar articles

Cited by

References

    1. Wade B, Keyburn A. The true cost of necrotic enteritis. World Poult. (2015) 31:16–7.
    1. Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. (2018) S1075–9964:30068–74. 10.1016/j.anaerobe.2018.04.011 - DOI - PMC - PubMed
    1. Stanley D, Keyburn AL, Denman SE, Moore RJ. Changes in the caecal microflora of chickens following Clostridium perfringens challenge to induce necrotic enteritis. Vet Microbiol. (2012) 159:155–62. 10.1016/j.vetmic.2012.03.032 - DOI - PubMed
    1. Sakurai J, Nagahama M, Oda M. Clostridium perfringens alpha-toxin: characterization and mode of action. J Biochem. (2004) 136:569–74. 10.1093/jb/mvh161 - DOI - PubMed
    1. Van Immerseel F, Rood JI, Moore RJ, Titball RW. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. (2009) 17:32–6. 10.1016/j.tim.2008.09.005 - DOI - PubMed