Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2019 Sep 1;188(9):1682-1685.
doi: 10.1093/aje/kwz119.

You Can't Drive a Car With Only Three Wheels

Affiliations
Comment

You Can't Drive a Car With Only Three Wheels

Hailey R Banack. Am J Epidemiol. .

Abstract

Authors aiming to estimate causal effects from observational data frequently discuss 3 fundamental identifiability assumptions for causal inference: exchangeability, consistency, and positivity. However, too often, studies fail to acknowledge the importance of measurement bias in causal inference. In the presence of measurement bias, the aforementioned identifiability conditions are not sufficient to estimate a causal effect. The most fundamental requirement for estimating a causal effect is knowing who is truly exposed and unexposed. In this issue of the Journal, Caniglia et al. (Am J Epidemiol. 2019;000(00):000-000) present a thorough discussion of methodological challenges when estimating causal effects in the context of research on distance to obstetrical care. Their article highlights empirical strategies for examining nonexchangeability due to unmeasured confounding and selection bias and potential violations of the consistency assumption. In addition to the important considerations outlined by Caniglia et al., authors interested in estimating causal effects from observational data should also consider implementing quantitative strategies to examine the impact of misclassification. The objective of this commentary is to emphasize that you can't drive a car with only three wheels, and you also cannot estimate a causal effect in the presence of exposure misclassification bias.

Keywords: causal inference; consistency; exchangeability; misclassification; positivity; quantitative bias analysis.

PubMed Disclaimer

Comment on

LinkOut - more resources