Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2019 Sep;71(3):534-542.
doi: 10.1016/j.jhep.2019.05.005. Epub 2019 May 18.

Arterial subtraction images of gadoxetate-enhanced MRI improve diagnosis of early-stage hepatocellular carcinoma

Affiliations
Case Reports

Arterial subtraction images of gadoxetate-enhanced MRI improve diagnosis of early-stage hepatocellular carcinoma

Dong Hwan Kim et al. J Hepatol. 2019 Sep.

Abstract

Background & aims: Although gadoxetate disodium-enhanced magnetic resonance imaging (MRI) shows higher sensitivity for diagnosing hepatocellular carcinoma (HCC), its arterial-phase images may be unsatisfactory because of weak arterial enhancement. We investigated the clinical effectiveness of arterial subtraction images from gadoxetate disodium-enhanced MRI for diagnosing early-stage HCC using the Liver Imaging Reporting and Data System (LI-RADS) v2018.

Methods: In 258 patients at risk of HCC who underwent gadoxetate disodium-enhanced MRI in 2016, a total of 372 hepatic nodules (273 HCCs, 18 other malignancies, and 81 benign nodules) of 3.0 cm or smaller were retrospectively analyzed. Final diagnosis was assessed histopathologically or clinically (marginal recurrence after treatment or change in lesion size on follow-up imaging). The detection rate for arterial hyperenhancement was compared between ordinary arterial-phase and arterial subtraction images, and the benefit of arterial subtraction images in diagnosing HCC using LI-RADS was assessed.

Results: Arterial subtraction images had a significantly higher detection rate for arterial hyperenhancement than ordinary arterial-phase images, both for all hepatic nodules (72.3% vs. 62.4%, p <0.001) and HCCs (91.9% vs. 80.6%, p <0.001). Compared with ordinary arterial-phase images, arterial subtraction images significantly increased the sensitivity of LI-RADS category 5 for diagnosis of HCC (64.1% [173/270] vs. 55.9% [151/270], p <0.001), without significantly decreasing specificity (92.9% [91/98] vs. 94.9% [93/98], p = 0.155). For histopathologically confirmed lesions, arterial subtraction images significantly increased sensitivity to 68.8% (128/186) from the 61.3% (114/186) of ordinary arterial-phase images (p <0.001), with a minimal decrease in specificity to 84.8% (39/46) from 89.1% (41/46) (p = 0.151).

Conclusions: Arterial subtraction images of gadoxetate disodium-enhanced MRI can significantly improve the sensitivity of early-stage HCC diagnosis using LI-RADS, without a significant decrease in specificity.

Lay summary: Gadoxetate disodium-enhanced magnetic resonance imaging is an imaging technique with a high sensitivity for the diagnosis of hepatocellular carcinoma. However, arterial-phase images may be unsatisfactory because of weak arterial enhancement. We found that using arterial subtraction images led to clinically meaningful improvements in the diagnosis of early-stage hepatocellular carcinoma.

Keywords: Diagnosis; Gadoxetate disodium; Hepatocellular carcinoma; LI-RADS; Magnetic resonance imaging; Subtraction technique.

PubMed Disclaimer

MeSH terms

LinkOut - more resources