Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;11(8):1264-1276.
doi: 10.1002/dta.2615. Epub 2019 Jun 9.

In vitro Phase I metabolism of indazole carboxamide synthetic cannabinoid MDMB-CHMINACA via human liver microsome incubation and high-resolution mass spectrometry

Affiliations

In vitro Phase I metabolism of indazole carboxamide synthetic cannabinoid MDMB-CHMINACA via human liver microsome incubation and high-resolution mass spectrometry

Brandon C Presley et al. Drug Test Anal. 2019 Aug.

Abstract

Synthetic cannabinoids have proliferated over the last decade and have become a major public health and analytical challenge, critically impacting the clinical and forensic communities. Indazole carboxamide class synthetic cannabinoids have been particularly rampant, and exhibit severe toxic effects upon consumption due to their high binding affinity and potency at the cannabinoid receptors (CB1 and CB2 ). MDMB-CHMINACA, methyl 2-[1-(cyclohexylmethyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate, a compound of this chemical class, has been identified in forensic casework and is structurally related to several other synthetic cannabinoids. This study presents the first extensive report on the Phase I metabolic profile of MDMB-CHMINACA, a potent synthetic cannabinoid. The in vitro metabolism of MDMB-CHMINACA was determined via incubation with human liver microsomes and high-resolution mass spectrometry. The accurate masses of precursor and fragments, mass error (ppm), and chemical formula were obtained for each metabolite. Twenty-seven metabolites were identified, encompassing twelve metabolite types. The major biotransformations observed were hydroxylation and ester hydrolysis. Hydroxylations were located predominantly on the cyclohexylmethyl (CHM) moiety. Ester hydrolysis was followed by additional biotransformations, including dehydrogenation; mono- and dihydroxylation and ketone formation, each with dehydrogenation. Minor metabolites were identified and reported. The authors propose that CHM-monohydroxylated metabolites specific to MDMB-CHMINACA are the most suitable candidates for implementation into bioanalytical assays to demonstrate consumption of this synthetic cannabinoid. Due to the structural similarity of MDMB-CHMINACA and currently trending synthetic cannabinoids whose metabolic profiles have not been reported, the results of this study can be used as a guide to predict their metabolic pathways.

Keywords: MDMB-CHMINACA; drug metabolism; forensic toxicology; high-resolution mass spectrometry; synthetic cannabinoids.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources