Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 20;9(1):7601.
doi: 10.1038/s41598-019-43956-3.

Common spatiotemporal processing of visual features shapes object representation

Affiliations

Common spatiotemporal processing of visual features shapes object representation

Paolo Papale et al. Sci Rep. .

Abstract

Biological vision relies on representations of the physical world at different levels of complexity. Relevant features span from simple low-level properties, as contrast and spatial frequencies, to object-based attributes, as shape and category. However, how these features are integrated into coherent percepts is still debated. Moreover, these dimensions often share common biases: for instance, stimuli from the same category (e.g., tools) may have similar shapes. Here, using magnetoencephalography, we revealed the temporal dynamics of feature processing in human subjects attending to objects from six semantic categories. By employing Relative Weights Analysis, we mitigated collinearity between model-based descriptions of stimuli and showed that low-level properties (contrast and spatial frequencies), shape (medial-axis) and category are represented within the same spatial locations early in time: 100-150 ms after stimulus onset. This fast and overlapping processing may result from independent parallel computations, with categorical representation emerging later than the onset of low-level feature processing, yet before shape coding. Categorical information is represented both before and after shape, suggesting a role for this feature in the refinement of categorical matching.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Different representations of a natural image. A real-world scene (A), depicting two giraffes in the savannah, can be defined by its edges (B), by the shape of the giraffes (C) and also by the categorical information it conveys (D). Photo taken from http://pixabay.com, released under Creative Commons CC0 license.
Figure 2
Figure 2
Methodological pipeline. (A) Experimental design: subjects were asked to attend thirty object pictures during a semantic judgment task. (B) representational dissimilarity matrices (RDMs) of three models (low-level features, shape and category) were employed to predict the MEG representational geometry – in the central triangle, Spearman correlation values between models are reported. With Relative Weights Analysis (C), MEG RDMs were predicted using three orthogonal principal components (PCs 1–3) obtained from the models, and the resulting regression weights were back-transformed to determine the relative impact of each model on the overall prediction when controlling for the impact of model collinearity (see Methods). Photo taken and edited from http://pixabay.com, released under Creative Commons CC0 license.
Figure 3
Figure 3
Results. Topographic plots of the group-level z-maps. Top-row reports the time bin. Black dots stand for significant channels within all the time-bin (p < 0.05, rank test, 100,000 permutations, TFCE corrected).

References

    1. Malcolm GL, Groen IIA, Baker CI. Making Sense of Real-World Scenes. Trends Cogn Sci. 2016;20:843–856. doi: 10.1016/j.tics.2016.09.003. - DOI - PMC - PubMed
    1. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381:607–609. doi: 10.1038/381607a0. - DOI - PubMed
    1. Vinje WE, Gallant JL. Sparse coding and decorrelation in primary visual cortex during natural vision. Science. 2000;287:1273–1276. doi: 10.1126/science.287.5456.1273. - DOI - PubMed
    1. Rice GE, Watson DM, Hartley T, Andrews TJ. Low-level image properties of visual objects predict patterns of neural response across category-selective regions of the ventral visual pathway. J Neurosci. 2014;34:8837–8844. doi: 10.1523/JNEUROSCI.5265-13.2014. - DOI - PMC - PubMed
    1. Groen, II et al. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior. Elife7, 10.7554/eLife.32962 (2018). - PMC - PubMed