Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 26;22(6):997-1003.
doi: 10.1093/ntr/ntz066.

Identification of Cigarette Brands by Soft Independent Modeling of Class Analogy of Volatile Substances

Affiliations

Identification of Cigarette Brands by Soft Independent Modeling of Class Analogy of Volatile Substances

Zuzana Zelinkova et al. Nicotine Tob Res. .

Abstract

Introduction: This study aimed to develop a method for discriminating cigarette brands based on the profiles of volatile components extracted from the tobacco fraction of the finished cigarettes to authenticate branded cigarettes of unknown origin.

Methods: An analytical method comprising direct thermal desorption coupled with gas chromatography-quadrupole time-of-flight mass spectrometry was developed for acquiring volatile profiles of cigarettes. About 290 samples of commercially available cigarettes were analyzed. Within this batch, 123 samples represented four popular cigarette brands. They were selected for in-depth characterization. Multivariate analysis was used to investigate the interrelations among volatile compounds of cigarettes and to identify characteristic markers for the cigarette discrimination. Supervised pattern recognition techniques were used for designing classification models.

Results: Principal component analysis covering all detected volatiles allowed the differentiation of cigarettes based on the brand. A number of 56 volatile components were identified as markers with high discrimination power. These compounds were used for establishing classification models. A method of soft independent modeling of class analogy developed for the four studied cigarette brands proved to be efficient in the classification of unknown cigarettes, with accuracy between 95.9% and 100%.

Conclusions: The data evaluation by soft independent modeling of class analogy was highly accurate in classification of unknown cigarettes with a low rate of false positives and false negatives. The developed models can be used for discrimination of genuine from non-genuine products with high level of probability.

Implications: Profiling of volatiles, which is commonly used for authentication of different food commodities, was applied for the characterization of cigarette tobacco for the purpose of authentication a cigarette brand. Volatile components with a high discrimination power were identified by means of multivariate statistical methods and used for establishing of a classification model. The classification model was able to discriminate genuine from non-genuine cigarettes with a high level of prediction accuracy. This model could be a powerful tool for tobacco control to judge the authenticity of cigarettes.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Disjoint principal component analysis (PCA) score plots of soft independent modeling of class analogy for cigarettes A (PC1 51.5%, PC2 18%), cigarettes B (PC1 50.3%, PC2 21.7%), cigarettes C (PC1 47.7%, PC2 18.2%), cigarettes D (PC1 32.1%, PC2 26.5%).

Similar articles

References

    1. Rodgman A, Perfetti TA.. The Chemical Components of Tobacco and Tobacco Smoke. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2012:1221–1298, 1471-1475.
    1. Chida M, Sone Y, Tamura H. Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system. J Agric Food Chem. 2004;52(26):7918–7924. - PubMed
    1. Leffingwell JC. Basic chemical constituents of tobacco leaf and differences among tobacco types. In: Davis DL, Nielson MT, eds. Tobacco: Production, Chemistry and Technology. Malden, MA: Blackwell Science; 1999:265–284.
    1. Leffingwell JC, Young HJ, Bernasek E.. Tobacco Flavouring for Smoking Products. Winston-Salem, NC: R. J. Reynolds Tobacco Company; 1972:3–10.
    1. Baker RR, Massey ED, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity. Food Chem Tox. 2004;42:53–83. - PubMed

Publication types

MeSH terms

Substances