Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 12;19(6):3464-3472.
doi: 10.1021/acs.nanolett.9b00144. Epub 2019 May 23.

Detection of Bosonic Mode as a Signature of Magnetic Excitation in One-Unit-Cell FeSe on SrTiO3

Affiliations

Detection of Bosonic Mode as a Signature of Magnetic Excitation in One-Unit-Cell FeSe on SrTiO3

Chaofei Liu et al. Nano Lett. .

Abstract

A "fingerprint" of Cooper pairing mediated by collective bosonic excitation mode is the reconstruction of the quasiparticle-density-of-states (DOS) spectrum with an additional "dip-hump" structure located outside the superconducting coherence peak. Here, we report an in situ scanning tunneling spectroscopy study of one-unit-cell (1-UC) FeSe film on a SrTiO3(001) substrate. In the quasiparticle-DOS spectrum, the bosonic excitation mode characterized by the dip-hump structure is detected outside the larger superconducting gap. Statistically, the excitation mode shows an anticorrelation with pairing strength in magnitude and yields an energy scale upper-bounded by twice the superconducting gap. The observation coincides with the characteristics of magnetic resonance in cuprates and iron-based superconductors. Furthermore, the local response of superconducting spectra to magnetically distinct Se defects all exhibits the induced in-gap quasiparticle bound states, indicating an unconventional sign-reversing pairing over the Fermi surface in 1-UC FeSe. These results clarify the magnetic nature of the bosonic excitation mode and reveal a signature of electron-magnetic-excitation coupling in 1-UC FeSe/SrTiO3(001) besides the previously established pairing channel of electron-phonon interaction.

Keywords: One-unit-cell FeSe/SrTiO; bosonic mode; electron−magnetic-excitation coupling; high-temperature superconductivity; scanning tunneling spectroscopy.

PubMed Disclaimer

Publication types

LinkOut - more resources