Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 29:12:915-923.
doi: 10.2147/IDR.S203288. eCollection 2019.

Investigation of six plasmid-mediated quinolone resistance genes among clinical isolates of pseudomonas: a genotypic study in Saudi Arabia

Affiliations

Investigation of six plasmid-mediated quinolone resistance genes among clinical isolates of pseudomonas: a genotypic study in Saudi Arabia

Mohamed F El-Badawy et al. Infect Drug Resist. .

Abstract

Background: Quinolones are among the most effective antibiotics against Pseudomonas spp. Several chromosomal and/or plasmid-mediated quinolone-resistance mechanisms have been found in Pseudomonas. Plasmid-mediated quinolone-resistance (PMQR) is mediated by quinolone-resistance (QNR) proteins, modifying enzymes or efflux pumps. Only a few previous studies examined the prevalence of quinolone-resistance in the Kingdom of Saudi Arabia (KSA) and showed it is increasing. Mechanisms of quinolone-resistance among Pseudomonas spp. in the KSA; examined herein; have not been extensively studied. Methods: Ninety-two Pseudomonas isolates were collected and their resistance to seven different types of quinolones was determined by the microbroth dilution method. PMQR mechanisms were examined using a PCR screen to identify six PMQR genes including qnrA, qnrB, qnrD, qnrS, aac(6´)-Ib-cr, and qepA. Clonal relatedness of the quinolone-resistant isolates was determined by ERIC-PCR. Results: Of the isolates, 42.4% (39/92) were resistant to 1-7 of the tested quinolones. Gemifloxacin resistance was the lowest (28.3%) while resistance to the other six quinolones were ≥ 35%. The most common biotype among the 39 quinolone-resistant isolates was resistance to the seven tested quinolones (26/39; 66.7%). qnrD, qnrS, and aac(6´)-Ib-cr were found in 31 (79.5%), 31 (79.5%) and 28 (71.8%) of the 39 isolates, respectively, and all three genes together were found in 22 of the 39 isolates (56.4%). qnrA, qnrB, and qepA were not detected in any of the isolates and two isolates did not harbor any of the six tested genes. The isolates showed 38 different ERIC profiles and only two isolates (Pa16 and Pa17) had an identical profile. Conclusion: This is the first description of PMQR mechanisms among clinical Pseudomonas isolates from the KSA, which appears to be mainly mediated by qnrD, qnrS, and aac(6´)-Ib-cr.

Keywords: KSA; Pseudomonas; QRDR; Taif; aac(6´)-Ib-cr; flouoroquinolones; qepA; qnr; quinolones.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
A representative example of ERIC-PCR pattern for clinical Pseudomonas isolates. There are five isolates on either side of the ladder (middle lane) on the gel.
Figure 2
Figure 2
Phylogenetic dendrogram analysis of quinolone-resistant Pseudomonas isolates by dice similarity coefficient clustering using ERIC-PCR based on the unweighted pair group method with arithmetic averages (UPGMA) at a position tolerance at 0.15. The banding pattern generated by ERIC-PCR was analyzed using BioNumerics software. The PCR fingerprint profile was analyzed using Dice (similarity) coefficient. Cluster analysis was performed based on UPGMA at a position tolerance of 0.15. Abbreviations: PGA, phylogenetic group A; PGB, phylogenetic group B.

References

    1. Yezli S, Shibl AM, Livermore DM, Memish ZA. Prevalence and antimicrobial resistance among Gram-negative pathogens in Saudi Arabia. J Chemother. 2014;26(5):257–272. doi:10.1179/1973947814Y.0000000185 - DOI - PubMed
    1. Oliphant CM, Green GM. Quinolones: a comprehensive review. Am Fam Physician. 2002;65(3):455–464. - PubMed
    1. Guan X, Xue X, Liu Y, et al. Plasmid-mediated quinolone resistance–current knowledge and future perspectives. J Int Med Res. 2013;41(1):20–30. - PubMed
    1. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438–445. doi:10.1016/j.tim.2014.04.007 - DOI - PubMed
    1. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354(1):12–31. doi:10.1111/nyas.12830 - DOI - PMC - PubMed