Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 5;21(22):11861-11870.
doi: 10.1039/c9cp01451a.

Photochromic reaction in 3H-naphthopyrans studied by vibrational spectroscopy and quantum chemical calculations

Affiliations

Photochromic reaction in 3H-naphthopyrans studied by vibrational spectroscopy and quantum chemical calculations

Sabina Brazevic et al. Phys Chem Chem Phys. .

Abstract

Structural details on the species involved in the photochromic reaction of 3H-naphthopyrans in solution have been formerly determined using NMR spectroscopy. Herein we show that at room temperature time-resolved FT-IR spectroscopy is a simple and efficient tool for structural characterization of colored species generated upon continuous UV light irradiation of the model compound 3H-naphthopyran: 3,3-diphenyl-3H-naphtho[2,1-b]pyran. In solution and in the polymer matrix phase, a colored species transoid-cis is formed after a single-photon excitation process, while transoid-trans is a secondary long-lived photoproduct generated after two-step excitation involving two photons. Understanding the reaction mechanism leading to long-lived colored species can help with the design of new 3H-naphthopyran derivatives structurally optimized for making a photochromic reaction free from transoid-trans products, which is often important for applications. Ab initio calculations show that photoinduced ring-opening followed by isomerization occurs on a multidimensional potential-energy surface. The barriers separating the considered isomeric forms, both in the ground and in the excited state, help to interpret the step-by-step dynamics of the photoprocesses. The system is composed of a variety of ground state equilibrium forms. Each of them is characterized by fast excited-state deactivation pathways which may drive the system through different conical intersection regions.

PubMed Disclaimer

LinkOut - more resources