Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug 15;262(23):10931-7.

Synthesis in vitro of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by interferon-gamma-stimulated normal human bone marrow and alveolar macrophages

  • PMID: 3112152
Free article

Synthesis in vitro of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 by interferon-gamma-stimulated normal human bone marrow and alveolar macrophages

H Reichel et al. J Biol Chem. .
Free article

Abstract

Cultured human macrophages from normal donors were examined for their capability to metabolize 25-hydroxyvitamin D3 (25-(OH)D3). Upon exposure to recombinant human interferon-gamma (IFN-gamma) both bone marrow-derived macrophages (BMM) and pulmonary alveolar macrophages (PAM) produced a polar 25-(OH)D3 metabolite which was purified from conditioned media and unequivocally identified as 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) by UV-absorbance spectrophotometry and mass spectrometry. The BMM and PAM also synthesized a second 25-(OH)D3 metabolite which was structurally identified as 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3). The time course of 25-(OH)D3 metabolism by macrophages suggested that the production of 24,25-(OH)2D3 was stimulated by high intracellular levels of 1,25-(OH)2D3 and not by IFN-gamma. The 1,25-(OH)2D3 obtained from BMM and PAM promoted macrophage-like differentiation of promyelocytic HL-60 leukemia cells and inhibited IFN-gamma production by normal human lymphocytes. Our data suggest that locally high levels of 1,25-(OH)2D3 in the microenvironment of IFN-gamma-stimulated BMM and PAM may modulate the function of hormone-responsive cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources