Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Aug;22(8):1324-1338.
doi: 10.1111/ele.13277. Epub 2019 May 24.

The role of seasonal timing and phenological shifts for species coexistence

Affiliations
Review

The role of seasonal timing and phenological shifts for species coexistence

Volker H W Rudolf. Ecol Lett. 2019 Aug.

Abstract

Shifts in the phenologies of coexistence species are altering the temporal structure of natural communities worldwide. However, predicting how these changes affect the structure and long-term dynamics of natural communities is challenging because phenology and coexistence theory have largely proceeded independently. Here, I propose a conceptual framework that incorporates seasonal timing of species interactions into a well-studied competition model to examine how changes in phenologies influence long-term dynamics of natural communities. Using this framework I demonstrate that persistence and coexistence conditions strongly depend on the difference in species' mean phenologies and how this difference varies across years. Consequently, shifts in mean and interannual variation in relative phenologies of species can fundamentally alter the outcome of interactions and the potential for persistence and coexistence of competing species. These effects can be predicted by how per-capita effects scale with differences in species' phenologies. I outline how this approach can be parameterized with empirical systems and discuss how it fits within the context of current coexistence theory. Overall, this synthesis reveals that phenology of species interactions can play a crucial yet currently understudied role in driving coexistence and biodiversity patterns in natural systems and determine how species will respond to future climate change.

Keywords: Climate change; coexistence; community dynamics; competition; mismatch; phenology; priority effect; seasonal variation.

PubMed Disclaimer

Similar articles

Cited by