Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May 23;7(2):23.
doi: 10.3390/proteomes7020023.

Different Types of Cellular Stress Affect the Proteome Composition of Small Extracellular Vesicles: A Mini Review

Affiliations
Review

Different Types of Cellular Stress Affect the Proteome Composition of Small Extracellular Vesicles: A Mini Review

Agata Abramowicz et al. Proteomes. .

Abstract

Extracellular vesicles (EVs) are well-known mediators of the cellular response to different stress factors, yet the exact mechanism of their action remains unclear. Hence, the characterization of their cargo, consisting of proteins, nucleic acids, and different classes of metabolites, helps to elucidate an understanding of their function in stress-related communication. The unexpected diversity and complexity of these vesicles requires the incorporation of multiple technologically advanced approaches in EV-oriented studies. This mini review focuses on the invaluable role of proteomics, especially mass spectrometry-based tools, in the investigation of the role of small EVs in their response to stress. Though relatively few experimental works address this issue to date, the available data indicate that stress conditions would affect the composition of protein cargo of vesicles released by stressed cells, as evidenced by the functional importance of such changes in the context of the response of recipient cells.

Keywords: exosome; extracellular vesicles; genotoxic stress; heat shock; hypoxia; mass spectrometry; oxidative stress; proteome.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Potential impact of extracellular vesicles (EVs) released by stressed cells in recipient cells.

References

    1. György B., Szabó T.G., Pásztói M., Pál Z., Misják P., Aradi B., László V., Pállinger E., Pap E., Kittel A., et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011;68:2667–2688. doi: 10.1007/s00018-011-0689-3. - DOI - PMC - PubMed
    1. Abramowicz A., Widlak P., Pietrowska M. Proteomic analysis of exosomal cargo: The challenge of high purity vesicle isolation. Mol. Biosyst. 2016;12:1407–1419. doi: 10.1039/C6MB00082G. - DOI - PubMed
    1. Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. - DOI - PMC - PubMed
    1. Lötvall J., Hill A.F., Hochberg F., Buzás E.I., Di Vizio D., Gardiner C., Gho Y.S., Kurochkin I.V., Mathivanan S., Quesenberry P., et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles. 2014;3:26913. doi: 10.3402/jev.v3.26913. - DOI - PMC - PubMed
    1. Van Niel G., D’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018;19:213–228. doi: 10.1038/nrm.2017.125. - DOI - PubMed

LinkOut - more resources