Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 24;15(1):168.
doi: 10.1186/s12917-019-1927-4.

Development and evaluation of a real-time RT-PCR and a field-deployable RT-insulated isothermal PCR for the detection of Seneca Valley virus

Affiliations

Development and evaluation of a real-time RT-PCR and a field-deployable RT-insulated isothermal PCR for the detection of Seneca Valley virus

Jianqiang Zhang et al. BMC Vet Res. .

Abstract

Background: Seneca Valley virus (SVV) has emerged in multiple countries in recent years. SVV infection can cause vesicular lesions clinically indistinguishable from those caused by other vesicular disease viruses, such as foot-and-mouth disease virus (FMDV), swine vesicular disease virus (SVDV), vesicular stomatitis virus (VSV), and vesicular exanthema of swine virus (VESV). Sensitive and specific RT-PCR assays for the SVV detection is necessary for differential diagnosis. Real-time RT-PCR (rRT-PCR) has been used for the detection of many RNA viruses. The insulated isothermal PCR (iiPCR) on a portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, SVV rRT-PCR and RT-iiPCR were developed and validated.

Results: Neither the SVV rRT-PCR nor the RT-iiPCR cross-reacted with any of the vesicular disease viruses (20 FMDV, two SVDV, six VSV, and two VESV strains), classical swine fever virus (four strains), and 15 other common swine viruses. Analytical sensitivities of the SVV rRT-PCR and RT-iiPCR were determined using serial dilutions of in vitro transcribed RNA as well as viral RNA extracted from a historical SVV isolate and a contemporary SVV isolate. Diagnostic performances were further evaluated using 125 swine samples by two approaches. First, nucleic acids were extracted from the 125 samples using the MagMAX™ kit and then tested by both RT-PCR methods. One sample was negative by the rRT-PCR but positive by the RT-iiPCR, resulting in a 99.20% agreement (124/125; 95% CI: 96.59-100%, κ = 0.98). Second, the 125 samples were tested by the taco™ mini extraction/RT-iiPCR and by the MagMAX™ extraction/rRT-PCR system in parallel. Two samples were positive by the MagMAX™/rRT-PCR system but negative by the taco™ mini/RT-iiPCR system, resulting in a 98.40% agreement (123/125; 95% CI: 95.39-100%, κ = 0.97). The two samples with discrepant results had relatively high CT values.

Conclusions: The SVV rRT-PCR and RT-iiPCR developed in this study are very sensitive and specific and have comparable diagnostic performances for SVV RNA detection. The SVV rRT-PCR can be adopted for SVV detection in laboratories. The SVV RT-iiPCR in a simple field-deployable system could serve as a tool to help diagnose vesicular diseases in swine at points of need.

Keywords: Insulated isothermal PCR; POCKIT™; RT-iiPCR; Real-time RT-PCR; SVV; Seneca Valley virus.

PubMed Disclaimer

Conflict of interest statement

Chuan-Fu Tsai, Chien-Hsien Lee, Yun-Long Tsai, Hwa-Tang Thomas Wang, and Pei-Yu Alison Lee were employees of GeneReach USA at the time this study was performed. However, this does not alter our adherence to all the BMC Veterinary Research’s policies on sharing data and materials. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Phylogenetic analysis of global SVV strains. The VP1 sequences of 112 global SVV strains available in GenBank were analyzed to assess the genetic diversity of SVVs. The 79 SVV strains with the whole genome sequences available are denoted with a black triangle. SVV strains from different countries are denoted with different colors. The GenBank accession numbers are included in each strain name

Similar articles

Cited by

References

    1. Adams MJ, Lefkowitz EJ, King AM, Bamford DH, Breitbart M, Davison AJ, Ghabrial SA, Gorbalenya AE, Knowles NJ, Krell P, et al. Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses (2015) Arch Virol. 2015;160(7):1837–1850. doi: 10.1007/s00705-015-2425-z. - DOI - PubMed
    1. Hales LM, Knowles NJ, Reddy PS, Xu L, Hay C, Hallenbeck PL. Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. J Gen Virol. 2008;89:1265–1275. doi: 10.1099/vir.0.83570-0. - DOI - PubMed
    1. Knowles NJ, Hales LM, Jones BH, Landgraf JG, House JA, Skele KL, Burroughs KD, Hallenbeck PL. Epidemiology of Seneca Valley virus: identification and characterization of isolates from pigs in the United States. Inari: The Northern Lights EUROPIC 2006 - 14th Meeting of the European Study Group on the Molecular Biology of Picornaviruses; 2006.
    1. Pasma T, Davidson S, Shaw SL. Idiopathic vesicular disease in swine in Manitoba. Can Vet J. 2008;49(1):84–85. - PMC - PubMed
    1. Singh K, Corner S, Clark SG, Scherba G, Fredrickson R. Seneca Valley virus and vesicular lesioins in a pig with idiopathic vesicular disease. J Vet Sci Technol. 2012;3:123.

MeSH terms

Supplementary concepts

LinkOut - more resources