Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Aug;15(8):444-455.
doi: 10.1038/s41574-019-0213-7.

The blood-brain barrier as an endocrine tissue

Affiliations
Review

The blood-brain barrier as an endocrine tissue

William A Banks. Nat Rev Endocrinol. 2019 Aug.

Abstract

The blood-brain barrier (BBB) was first noted for its ability to prevent the unregulated exchange of substances between the blood and the central nervous system (CNS). Over time, its characterization as an interface that enables regulated exchanges between the CNS and substances that are carried in the blood in a hormone-like fashion have emerged. Therefore, communication between the CNS, BBB and peripheral tissues has many endocrine-like properties. In this Review, I examine the various ways in which the BBB exhibits endocrine-related properties. The BBB is a target for hormones, such as leptin and insulin, that affect many of its functions. The BBB is also a secretory body, releasing substances either into the blood or the interstitial fluid of the brain. The BBB selectively allows classical and non-classical hormones entry to and exit from the CNS, thus allowing the CNS to be both an endocrine target and a secretory tissue. The BBB is affected by endocrine diseases such as diabetes mellitus and can cause or participate in endocrine diseases, including those related to thyroid hormones and obesity. The endocrine-like mechanisms of the BBB can extend the definition of endocrine disease to include neurodegenerative conditions, including Alzheimer disease, and of hormones to include cytokines, triglycerides and fatty acids.

PubMed Disclaimer

References

    1. Neuwelt, E. et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 7, 84–96 (2008). - PubMed
    1. Davson, H. & Segal, M. B. (eds) in Physiology of the CSF and Blood–Brain Barriers 303–485 (CRC Press, Boca Raton, 1996)
    1. Banks, W. A. in Efflux Transporters and the Blood-Brain Barrier (ed. Taylor, E. M.) 21–53 (Nova Science Publishers Inc.,2005).
    1. Pan, W. & Kastin, A. J. Cytokine transport across the injured blood-spinal cord barrier. Curr. Pharm. Des. 14, 1620–1624 (2008). - PubMed - PMC
    1. Kastin, A. J. & Pan, W. Blood-brain barrier and feeding: Regulatory roles of saturable transport systems for ingestive peptides. Curr. Pharm. Des. 14, 1615–1619 (2008). - PubMed - PMC

LinkOut - more resources