Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul 15:402:121-130.
doi: 10.1016/j.jns.2019.05.016. Epub 2019 May 15.

Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium

Affiliations
Review

Targeting kinases in Parkinson's disease: A mechanism shared by LRRK2, neurotrophins, exenatide, urate, nilotinib and lithium

Thomas Guttuso Jr et al. J Neurol Sci. .

Abstract

Several kinases have been implicated in the pathogenesis of Parkinson's disease (PD), most notably leucine-rich repeat kinase 2 (LRRK2), as LRRK2 mutations are the most common genetic cause of a late-onset parkinsonism that is clinically indistinguishable from sporadic PD. More recently, several other kinases have emerged as promising disease-modifying targets in PD based on both preclinical studies and clinical reports on exenatide, the urate precursor inosine, nilotinib and lithium use in PD patients. These kinases include protein kinase B (Akt), glycogen synthase kinases-3β and -3α (GSK-3β and GSK-3α), c-Abelson kinase (c-Abl) and cyclin-dependent kinase 5 (cdk5). Activities of each of these kinases are involved either directly or indirectly in phosphorylating tau or increasing α-synuclein levels, intracellular proteins whose toxic oligomeric forms are strongly implicated in the pathogenesis of PD. GSK-3β, GSK-3α and cdk5 are the principle kinases involved in phosphorylating tau at sites critical for the formation of tau oligomers. Exenatide analogues, urate, nilotinib and lithium have been shown to affect one or more of the above kinases, actions that can decrease the formation and increase the clearance of intraneuronal phosphorylated tau and α-synuclein. Here we review the current preclinical and clinical evidence supporting kinase-targeting agents as potential disease-modifying therapies for PD patients enriched with these therapeutic targets and incorporate LRRK2 physiology into this novel model.

Keywords: Exenatide; LRRK2; Lithium; Nilotinib; Parkinson's disease; Urate.

PubMed Disclaimer

MeSH terms

Substances