Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 25;6(10):1802350.
doi: 10.1002/advs.201802350. eCollection 2019 May 17.

Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation

Affiliations

Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation

Qiming Sun et al. Adv Sci (Weinh). .

Abstract

Taking advantage of the synergetic effect of confined ultrasmall metal clusters and zeolite frameworks is an efficient strategy for improving the catalytic performance of metal nanocatalysts. Herein, it is demonstrated that the synergetic effect of ultrasmall ruthenium (Ru) clusters and intrinsic Brønsted acidity of zeolite frameworks can significantly promote the hydrogen generation of ammonia borane (AB) hydrolysis. Ultrasmall Ru clusters are embedded onto the silicoaluminophosphate SAPO-34 (CHA) and various aluminosilicate zeolites (MFI, *BEA, and FAU) with tunable acidities by a facile incipient wetness impregnation method. Evidenced by high-resolution scanning transmission electron microscopy, the sub-nanometric Ru clusters are uniformly distributed throughout the zeolite crystals. The X-ray absorption spectroscopy measurements reveal the existence of Ru-H species between Ru clusters and adjacent Brønsted acid sites of zeolites, which could synergistically activate AB and water molecules, significantly enhancing the hydrogen evolution rate of AB hydrolysis. Notably, the Ru/SAPO-34-0.8Si (Si/Al = 0.8) and Ru/FAU (Si/Al = 30) catalysts with strong acidities afford high turnover frequency values up to 490 and 627 min-1, respectively. These values are more than a 13-fold enhancement than that of the commercial Ru/C catalyst, and among the top level over other heterogeneous catalysts tested under similar conditions.

Keywords: ammonia borane; heterogeneous catalysis; hydrogen evolution; metal clusters; zeolites.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A) Synthetic procedure of Ru/SAPO‐34 catalysts, B) XRD patterns, C) NH3‐TPD curves, D) in situ IR spectroscopy of the adsorbed deuterated CD3CN, and E) 1H MAS NMR spectra of samples.
Figure 2
Figure 2
HAADF‐STEM images of A,D) Ru/AlPO‐34, B,E) Ru/SAPO‐34‐0.1Si and C,F) Ru/SAPO‐34‐0.2Si samples. G) HAADF‐STEM images of Ru/SAPO‐34‐0.2Si sample, and corresponding element maps showing distributions of Al, P, Si, O, and Ru, respectively.
Figure 3
Figure 3
A,B) Ru K‐edge XANES spectra of Ru foil, Ru/zeolite samples. C) Fourier transform of k2‐weighted EXAFS spectra of catalysts at Ru K‐edge. D) Ru 3p XPS spectra of the samples.
Figure 4
Figure 4
A,B) Volume of the H2 generated from AB (1 m) hydrolysis versus time at 25 °C catalyzed by various catalysts (n Ru/n AB = 0.007). C) The proposed mechanism for NH3BH3 hydrolysis over Ru/SAPO‐34 catalysts. D) Volume of the H2 generated from AB (1 m) hydrolysis versus time and E) corresponding TOF values at different temperatures catalyzed by Ru/SAPO‐34‐0.2Si catalyst (n Ru/n AB = 0.007), inset of (D): Arrhenius plot (ln TOF versus 1/T). F) Durability tests for the AB (1 m) hydrolysis at 25 °C over Ru/SAPO‐34‐0.2Si catalysts (n Ru/n AB = 0.007).
Figure 5
Figure 5
NH3‐TPD curves of A) Ru/SAPO‐34 catalysts, C) Ru/MFI catalysts, E) Ru/*BEA catalysts, and G) Ru/FAU catalysts. Volume of the H2 generated from AB (1 m) hydrolysis versus time at 25 °C catalyzed by B) Ru/SAPO‐34 catalysts (TOF values of Ru/SAPO‐34‐0.2, Ru/SAPO‐34‐0.4, Ru/SAPO‐34‐0.6, and Ru/SAPO‐34‐0.8 are 310, 356, 415, 490 min−1, respectively), D) Ru/MFI catalysts (TOF values of Ru/MFI (Si/Al = 80), Ru/MFI (Si/Al = 30), and Ru/MFI (Si/Al = 23) are 302, 497, and 575 min−1, respectively), F) Ru/*BEA catalysts (TOF values of Ru/*BEA (Si/Al = 50) and Ru/*BEA (Si/Al = 25) are 501 and 615 min−1, respectively), and H) Ru/FAU catalysts (TOF values of Ru/*BEA (Si/Al = 60) and Ru/*BEA (Si/Al = 30) are 522 and 627 min−1, respectively). The ratios of n Ru/n AB are all fixed for 0.007.

References

    1. a) Schlapbach L., Zuttel A., Nature 2001, 414, 353; - PubMed
    2. b) Rosi N., Eckert J., Eddaoudi M., Vodak D., Kim J., O'Keeffe M., Yaghi O., Science 2003, 300, 1127; - PubMed
    3. c) Edwards P., Kuznetsov V., David W., Brandon N., Energy Policy 2008, 36, 4356.
    1. a) Seayad A., Antonelli D., Adv. Mater. 2004, 16, 765;
    2. b) Wang H., Zhu Q., Zou R., Xu Q., Chem 2017, 2, 52;
    3. c) Dhakshinamoorthy A., Garcia H., Chem. Soc. Rev. 2012, 41, 5262. - PubMed
    1. a) Demirci U., Miele P., Energy Environ. Sci. 2009, 2, 627;
    2. b) Peng B., Chen J., Energy Environ. Sci. 2008, 1, 479;
    3. c) Jiang H., Xu Q., Catal. Today 2011, 170, 56.
    1. a) Abo‐Hamed E., Pennycook T., Vaynzof Y., Toprakcioglu C., Koutsioubas A., Scherman O., Small 2014, 10, 3145; - PubMed
    2. b) Fang Y., Li J., Togo T., Jin F., Xiao Z., Liu L., Drake H., Lian X., Zhou H., Chem 2018, 4, 555.
    1. a) Khalily M., Eren H., Akbayrak S., Susapto H., Biyikli N., Ozkar S., Guler M., Angew. Chem., Int. Ed. 2016, 55, 12257; - PubMed
    2. b) Wang L., Li H., Zhang W., Zhao X., Qiu J., Li A., Zheng X., Hu Z., Si R., Zeng J., Angew. Chem., Int. Ed. 2017, 56, 4712. - PubMed

LinkOut - more resources