Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul 1;20(7):723-734.
doi: 10.1093/ehjci/jez094.

Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury

Affiliations
Review

Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury

Ahmet Demirkiran et al. Eur Heart J Cardiovasc Imaging. .

Abstract

The annual incidence of hospital admission for acute myocardial infarction lies between 90 and 312 per 100 000 inhabitants in Europe. Despite advances in patient care 1 year mortality after ST-segment elevation myocardial infarction (STEMI) remains around 10%. Cardiovascular magnetic resonance imaging (CMR) has emerged as a robust imaging modality for assessing patients after acute myocardial injury. In addition to accurate assessment of left ventricular ejection fraction and volumes, CMR offers the unique ability of visualization of myocardial injury through a variety of imaging techniques such as late gadolinium enhancement and T2-weighted imaging. Furthermore, new parametric mapping techniques allow accurate quantification of myocardial injury and are currently being exploited in large trials aiming to augment risk management and treatment of STEMI patients. Of interest, CMR enables the detection of microvascular injury (MVI) which occurs in approximately 40% of STEMI patients and is a major independent predictor of mortality and heart failure. In this article, we review traditional and novel CMR techniques used for myocardial tissue characterization after acute myocardial injury, including the detection and quantification of MVI. Moreover, we discuss clinical scenarios of acute myocardial injury in which the tissue characterization techniques can be applied and we provide proposed imaging protocols tailored to each scenario.

Keywords: acute myocardial infarction; cardiovascular magnetic resonance imaging; infarct tissue characterization; intramyocardial haemorrhage; microvascular injury.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms