Direct Prebiotic Pathway to DNA Nucleosides
- PMID: 31131499
- DOI: 10.1002/anie.201903400
Direct Prebiotic Pathway to DNA Nucleosides
Abstract
It is assumed that RNA played a key role in the origin of life, and the transition to more complex but more stable DNA for continuous information storage and replication requires the development of a ribonucleotide reductase to obtain the deoxyribonucleotides from ribonucleotides. This step, as well as an alternative path from abiotic molecules to DNA-based life is completely unknown. Shown here is the formation of deoxyribonucleosides under relevant prebiotic conditions in water in high regio- and stereoselectivity, from all canonical purine and pyrimidine bases, by condensation with acetaldehyde and sugar-forming precursors. Thus, a continuous path to deoxyribonucleosides, starting from simple, prebiotically available molecules has been discovered. Furthermore, the deoxyapionucleosides (DApiNA) were identified as a potential DNA progenitor. The results suggest that the DNA world evolved much earlier than previously assumed.
Keywords: nucleosides; organocatalysis; origin of life; polymers; prebiotic chemistry.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
