Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;32(8):e4114.
doi: 10.1002/nbm.4114. Epub 2019 May 27.

Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods

Affiliations

Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods

Richu Jin et al. NMR Biomed. 2019 Aug.

Abstract

Diffusion tensor imaging (DTI) has been proposed for the prognosis of cervical myelopathy (CM), but the manual analysis of DTI features is complicated and time consuming. This study evaluated the potential of artificial intelligence (AI) methods in the analysis of DTI for the prognosis of CM. Seventy-five patients who underwent surgical treatment for CM were recruited for DTI imaging and were divided into two groups based on their one-year follow-up recovery. The DTI features of fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity were extracted from DTI maps of all cervical levels. Conventional AI models using logistic regression (LR), k-nearest neighbors (KNN), and a radial basis function kernel support vector machine (RBF-SVM) were built using these DTI features. In addition, a deep learning model was applied to the DTI maps. Their performances were compared using 50 repeated 10-fold cross-validations. The accuracy of the classifications reached 74.2% ± 1.6% for LR, 85.6% ± 1.4% for KNN, 89.7% ± 1.6% for RBF-SVM, and 59.2% ± 3.8% for the deep leaning model. The RBF-SVM algorithm achieved the best accuracy, with sensitivity and specificity of 85.0% ± 3.4% and 92.4% ± 1.9% respectively. This finding indicates that AI methods are feasible and effective for DTI analysis for the prognosis of CM.

Keywords: artificial intelligence (AI); cervical myelopathy (CM); diffusion tensor imaging (DTI); prognosis.

PubMed Disclaimer

Publication types

LinkOut - more resources