Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 9;15(7):4170-4179.
doi: 10.1021/acs.jctc.9b00325. Epub 2019 Jun 10.

Benchmarks for Electronically Excited States with CASSCF Methods

Affiliations

Benchmarks for Electronically Excited States with CASSCF Methods

Benjamin Helmich-Paris. J Chem Theory Comput. .

Abstract

The accuracy of three different complete active space (CAS) self-consistent field (CASSCF) methods is investigated for the electronically excited-state benchmark set of Schreiber , M. ; et al. J. Chem. Phys. 2008 , 128 , 134110 . Comparison of the CASSCF linear response (LR) methods MC-RPA and MC-TDA and the state-averaged (SA) CASSCF method is made for 122 singlet excitation energies and 69 oscillator strengths. Of all CASSCF methods, when considering the complete test set, MC-RPA performs best for both excitation energies and oscillator strengths with a mean absolute error (MAE) of 0.74 eV and 51%, respectively. MC-TDA and SA-CASSCF show a similar accuracy for the excitation energies with a MAE of ∼1 eV with respect to more accurate coupled cluster (CC3) excitation energies. The opposite trend is observed for the subset of n → π* excitation energies for which SA-CASSCF exhibits the least deviations (MAE 0.65 eV). By looking at s-tetrazine in more detail, we conclude that better performance for the n → π* SA-CASSCF excitation energies can be attributed to a fortunate error compensation. For oscillator strengths, SA-CASSCF performs worst for the complete test set (MAE 100%) as well as for the subsets of n → π* (MAE 192%) and π → π* excitations (MAE 84.9%). In general, CASSCF gives the worst performance for excitation energies of all excited-state ab initio methods considered so far due to lacking the major part of dynamic electron correlation, though MC-RPA and TD-DFT (BP86) show similar performance. Among all LR-type methods, LR-CASSCF oscillator strengths are the ones with the least accuracy for the same reason. As state-specific orbital relaxation effects are accounted for in LR-CASSCF, oscillator strengths are significantly more accurate than those of MS-CASPT2. Our findings should encourage further developments of response theory-based multireference methods with higher accuracy and feasibility.

PubMed Disclaimer

Conflict of interest statement

The author declares no competing financial interest.

Figures

Figure 1
Figure 1
Normal distribution of deviation from the CC3 reference singlet excitation energies of the complete test set and subsets of n → π* and π → π* excitations.
Figure 2
Figure 2
Lowest singlet excitation energies of s-tetrazine with different CASSCF methods and CC3. Solid lines are n → π* excitations; dashed lines are π → π* excitations.
Figure 3
Figure 3
Normal distribution of deviation from the CC3 reference singlet excitation energies computed with various methods.
Figure 4
Figure 4
Normal distribution of deviation from the CC3 reference oscillator strengths of the complete test set and subsets of n → π* and π → π* excitations.
Figure 5
Figure 5
Normal distribution of deviation from the CC3 reference oscillator strengths computed with various methods.

Similar articles

Cited by

References

    1. Schreiber M.; Silva-Junior M. R.; Sauer S. P. A.; Thiel W. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 2008, 128, 134110.10.1063/1.2889385. - DOI - PubMed
    1. Andersson K.; Malmqvist P. Å.; Roos B. O.; Sadlej A. J.; Wolinski K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 1990, 94, 5483–5488. 10.1021/j100377a012. - DOI
    1. Andersson K.; Malmqvist P.-Å.; Roos B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 1992, 96, 1218–1226. 10.1063/1.462209. - DOI
    1. Finley J.; Malmqvist P.-Å.; Roos B. O.; Serrano-Andrés L. The multi-state CASPT2 method. Chem. Phys. Lett. 1998, 288, 299–306. 10.1016/S0009-2614(98)00252-8. - DOI
    1. Christiansen O.; Koch H.; Jørgensen P. The second-order approximate coupled cluster singles and doubles model CC2. Chem. Phys. Lett. 1995, 243, 409–418. 10.1016/0009-2614(95)00841-Q. - DOI