Benchmarks for Electronically Excited States with CASSCF Methods
- PMID: 31136706
- PMCID: PMC6620717
- DOI: 10.1021/acs.jctc.9b00325
Benchmarks for Electronically Excited States with CASSCF Methods
Abstract
The accuracy of three different complete active space (CAS) self-consistent field (CASSCF) methods is investigated for the electronically excited-state benchmark set of Schreiber , M. ; et al. J. Chem. Phys. 2008 , 128 , 134110 . Comparison of the CASSCF linear response (LR) methods MC-RPA and MC-TDA and the state-averaged (SA) CASSCF method is made for 122 singlet excitation energies and 69 oscillator strengths. Of all CASSCF methods, when considering the complete test set, MC-RPA performs best for both excitation energies and oscillator strengths with a mean absolute error (MAE) of 0.74 eV and 51%, respectively. MC-TDA and SA-CASSCF show a similar accuracy for the excitation energies with a MAE of ∼1 eV with respect to more accurate coupled cluster (CC3) excitation energies. The opposite trend is observed for the subset of n → π* excitation energies for which SA-CASSCF exhibits the least deviations (MAE 0.65 eV). By looking at s-tetrazine in more detail, we conclude that better performance for the n → π* SA-CASSCF excitation energies can be attributed to a fortunate error compensation. For oscillator strengths, SA-CASSCF performs worst for the complete test set (MAE 100%) as well as for the subsets of n → π* (MAE 192%) and π → π* excitations (MAE 84.9%). In general, CASSCF gives the worst performance for excitation energies of all excited-state ab initio methods considered so far due to lacking the major part of dynamic electron correlation, though MC-RPA and TD-DFT (BP86) show similar performance. Among all LR-type methods, LR-CASSCF oscillator strengths are the ones with the least accuracy for the same reason. As state-specific orbital relaxation effects are accounted for in LR-CASSCF, oscillator strengths are significantly more accurate than those of MS-CASPT2. Our findings should encourage further developments of response theory-based multireference methods with higher accuracy and feasibility.
Conflict of interest statement
The author declares no competing financial interest.
Figures
References
-
- Andersson K.; Malmqvist P. Å.; Roos B. O.; Sadlej A. J.; Wolinski K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 1990, 94, 5483–5488. 10.1021/j100377a012. - DOI
-
- Andersson K.; Malmqvist P.-Å.; Roos B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 1992, 96, 1218–1226. 10.1063/1.462209. - DOI
-
- Finley J.; Malmqvist P.-Å.; Roos B. O.; Serrano-Andrés L. The multi-state CASPT2 method. Chem. Phys. Lett. 1998, 288, 299–306. 10.1016/S0009-2614(98)00252-8. - DOI
-
- Christiansen O.; Koch H.; Jørgensen P. The second-order approximate coupled cluster singles and doubles model CC2. Chem. Phys. Lett. 1995, 243, 409–418. 10.1016/0009-2614(95)00841-Q. - DOI
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
