Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep:131:110531.
doi: 10.1016/j.fct.2019.05.039. Epub 2019 May 25.

In vitro/in vivo hepatoprotective properties of 1-O-(4-hydroxymethylphenyl)-α-L-rhamnopyranoside from Moringa oleifera seeds against carbon tetrachloride-induced hepatic injury

Affiliations

In vitro/in vivo hepatoprotective properties of 1-O-(4-hydroxymethylphenyl)-α-L-rhamnopyranoside from Moringa oleifera seeds against carbon tetrachloride-induced hepatic injury

Congyong Sun et al. Food Chem Toxicol. 2019 Sep.

Abstract

1-O-(4-hydroxymethylphenyl)-α-L-rhamnopyranoside (MPG) is a phenolic glycoside that exists in Moringa oleifera seeds with various health benefits, whereas its hepatoprotective effect is lacking clarification. Herein, MPG was isolated from Moringa oleifera seeds, and its hepatoprotection against CCl4-induced hepatotoxicity in L02 cells and ICR mice was investigated. Toxicity studies showed that MPG did not induce significant changes in organ coefficients and histological analysis, as well as exhibited no cytotoxicity. In vitro studies indicated that MPG substantially increased cell viability and intracellular SOD activities, and significantly inhibited LDH leakage in CCl4-treated cells. In vivo studies demonstrated that MPG significantly alleviated CCl4-induced hepatotoxicity in mice, as indicated by diagnostic indicators of hepatic injury, as well as the histopathological analysis. Moreover, MPG reduced the lipid peroxidation levels and regulated the inflammatory cytokines. Notably, MPG substantially suppressed the significant elevation of ROS production in hepatocytes of mice intoxicated with CCl4. Moreover, TUNEL assay demonstrated that MPG obviously inhibited hepatic apoptosis induced by CCl4. Altogether, these results suggested that MPG has excellent liver-protecting effects against hepatocytotoxicity induced by CCl4 in mice and L02 cells, which can be further developed as a valuable functional food additive or drug for the treatment of hepatic injury.

Keywords: 1-O-(4-hydroxymethylphenyl)-α-L-rhamnopyranoside; Acute toxicity; Carbon tetrachloride; Hepatotoxicity; Moringa oleifera seeds; Oxidative stress.

PubMed Disclaimer

MeSH terms

LinkOut - more resources