Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May 20:7:32.
doi: 10.1186/s40560-019-0387-z. eCollection 2019.

Sepsis-associated disseminated intravascular coagulation and its differential diagnoses

Affiliations
Review

Sepsis-associated disseminated intravascular coagulation and its differential diagnoses

Toshiaki Iba et al. J Intensive Care. .

Abstract

Disseminated intravascular coagulation (DIC) is a common complication in sepsis. Since DIC not only promotes organ dysfunction but also is a strong prognostic factor, its diagnosis at the earliest possible timing is important. Thrombocytopenia is often present in patients with DIC but can also occur in a number of other critical conditions. Of note, many of the rare thrombocytopenic diseases require prompt diagnoses and specific treatments. To differentiate these diseases correctly, the phenotypic expressions must be considered and the different disease pathophysiologies must be understood. There are three major players in the background characteristics of thrombocytopenia: platelets, the coagulation system, and vascular endothelial cells. For example, the activation of coagulation is at the core of the pathogenesis of sepsis-associated DIC, while platelet aggregation is the essential mechanism in thrombotic thrombocytopenic purpura and endothelial damage is the hallmark of hemolytic uremic syndrome. Though each of the three players is important in all thrombocytopenic diseases, one of the three dominant players typically establishes the individual features of each disease. In this review, we introduce the pathogeneses, symptoms, diagnostic measures, and recent therapeutic advances for the major diseases that should be immediately differentiated from DIC in sepsis.

Keywords: Disseminated intravascular coagulation; Hemolytic uremic syndrome; Heparin-induced thrombocytopenia; Sepsis; Thrombotic thrombocytopenic purpura.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
An algorithm to differentiate sepsis-associated DIC from other diseases with thrombocytopenia. Both the prothrombin time (PT) ratio and the level of fibrin/fibrinogen degradation products are elevated in sepsis-associated DIC (disseminated intravascular coagulation). If either marker is within the normal range, other diseases can be suspected. If microangiopathic hemolytic anemia (MAHA) is recognized, Escherichia coli (STEC)-hemolytic uremic syndrome (HUS) will be discriminated by performing a stool culture or polymerase chain reaction (PCR) assay first. If it is not, thrombotic thrombocytopenic purpura (TTP), atypical HUS (aHUS), or secondary thrombotic microangiopathy are suspicious, and the early initiation of plasma exchange is recommended unless a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) level is confirmed. TTP is diagnosed by the identification of a low ADAMTS13 activity (< 10%). If plasma exchange is ineffective, refractory TTP, aHUS, or other disease is suspicious and the use of either rituximab or eculizumab will be considered. In those cases, the laboratory findings and clinical symptoms such as acute kidney injury and gastrointestinal or neurological damage will be carefully examined; if these findings suggest aHUS, the patient’s age and medical and family histories can be helpful for a diagnosis. Similarly, the possibility of secondary TMAs can be considered. If the presence of MAHA is not recognized, the possibility of other diseases such as heparin-induced thrombocytopenia (HIT), immune thrombocytopenia purpura (ITP), hemophagocytic syndrome (HPS), acute infectious purpura fulminans (AIPF), severe fever and thrombocytopenia syndrome (SFTS), and thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly (TAFRO) syndrome would be considered
Fig. 2
Fig. 2
Check sheet for the secondary thrombotic microangiopathic diseases. For the discrimination in secondary TMA, each item in the check sheet will be confirmed

References

    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;23(315):801–810. doi: 10.1001/jama.2016.0287. - DOI - PMC - PubMed
    1. Howell MD, Davis AM. Management of sepsis and septic shock. JAMA. 2017;317:847–848. doi: 10.1001/jama.2017.0131. - DOI - PubMed
    1. Thiery-Antier N, Binquet C, Vinault S, Meziani F, Boisramé-Helms J, Quenot JP. Is thrombocytopenia an early prognostic marker in septic shock? Crit Care Med. 2016;44:764–772. - PubMed
    1. Claushuis TA, van Vught LA, Scicluna BP, Wiewel MA, Klein Klouwenberg PM, Hoogendijk AJ, Ong DS, Cremer OL, Horn J, Franitza M, Toliat MR, Nürnberg P, Zwinderman AH, Bonten MJ, Schultz MJ, van der Poll T. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsispatients. Blood. 2016;127:3062–3072. doi: 10.1182/blood-2015-11-680744. - DOI - PubMed
    1. de Stoppelaar SF, van’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112:666–677. doi: 10.1160/TH14-02-0126. - DOI - PubMed

LinkOut - more resources