Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep 1;167(2):253-9.
doi: 10.1111/j.1432-1033.1987.tb13331.x.

The effect of thrombin on the complex between factor VIII and von Willebrand factor

Free article

The effect of thrombin on the complex between factor VIII and von Willebrand factor

R J Hamer et al. Eur J Biochem. .
Free article

Abstract

Purified human factor FVIII (FVIII; 6000-8000 U/mg) was radiolabeled and bound to immobilized von Willebrand factor (vWF). The complex was incubated with human thrombin. Thrombin induced a release of 65% of the radioactivity initially bound. Released FVIII fragments and fragments remaining bound during incubation with thrombin were analyzed using gel electrophoresis. This led to the following observations. Released fragments largely consisted of Mr-70000 and Mr-50000 fragments; Mr-90000 and Mr-80000 fragments were only found in the fractions remaining bound to vWF and decreased with time. In contrast to these digestion products of FVIII, the Mr-42000 heavy-chain fragment remained bound to vWF, comprising the larger part of the radioactivity after a 2-h incubation. No thrombin-induced cleavages were observed in vWF. Furthermore, vWF-coated wells preincubated with thrombin were still able to bind 125I-FVIII. These results implicate a new concept for the activation of vWF-bound FVIII. Activation is a multistep process in which several cleavages are necessary to produce and release a coagulant-active FVIII molecule (FVIIIa), which is probably an Mr-50000/70000 heterodimer. Inactivation of FVIIIa is likely to be the result of a nonproteolytic dissociation due to loss of the joining divalent cation(s).

PubMed Disclaimer

Publication types

LinkOut - more resources