Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 27:1073:62-71.
doi: 10.1016/j.aca.2019.04.061. Epub 2019 Apr 30.

Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy

Affiliations

Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy

Melisew Tadele Alula et al. Anal Chim Acta. .

Abstract

In this study, silver nanostructures decorated magnetic nanoparticles for surface-enhanced Raman scattering (SERS) measurements were prepared via heat induced catalytic activity of ZnO nanostructures. The ZnO/Fe3O4 composite was first prepared by dispersing pre-formed magnetic nanoparticles into alkaline zinc nitrate solutions. After annealing of the precipitates, the formed ZnO/Fe3O4 composites were successfully decorated with silver nanostructures by dispersing the composites into silver nitrate/ethylene glycol solution at 95 °C in water bath. To find the optimal condition when preparing Ag/ZnO/Fe3O4 composites for SERS measurements, factors such as reaction time and concentration of silver nitrate were studied. Results indicated that the formation of silver nanoparticles (AgNPs) on ZnO/Fe3O4 was significantly improved with the assistance of ZnO. The concentration of silver nitrate and reaction time affected the morphologies and sizes of the formed composites and optimal condition in preparation of the composites for SERS measurement was found using 100 mM of silver nitrate with a reaction time of 20 min. Under optimized conditions, the obtained SERS intensities were highly reproducible. The substrates were applied for quantitative analysis of uric acid in aqueous solution and a linear response for concentrations up to 10 μM was obtained. Successful application of these prepared composites to determine uric acid in urine sample without any pretreatment of the urine sample was done.

Keywords: Heat-induced; Magnetic composites; Silver nanoparticles; Surface-enhanced Raman spectroscopy; Uric acid.

PubMed Disclaimer

LinkOut - more resources