Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May 30;24(11):2067.
doi: 10.3390/molecules24112067.

Role of Saponins in Plant Defense Against Specialist Herbivores

Affiliations
Review

Role of Saponins in Plant Defense Against Specialist Herbivores

Mubasher Hussain et al. Molecules. .

Abstract

The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae) is a very destructive crucifer-specialized pest that has resulted in significant crop losses worldwide. DBM is well attracted to glucosinolates (which act as fingerprints and essential for herbivores in host plant recognition) containing crucifers such as wintercress, Barbarea vulgaris (Brassicaceae) despite poor larval survival on it due to high-to-low concentration of saponins and generally to other plants in the genus Barbarea. B. vulgaris build up resistance against DBM and other herbivorous insects using glucosinulates which are used in plant defense. Aside glucosinolates, Barbarea genus also contains triterpenoid saponins, which are toxic to insects and act as feeding deterrents for plant specialist herbivores (such as DBM). Previous studies have found interesting relationship between the host plant and secondary metabolite contents, which indicate that attraction or resistance to specialist herbivore DBM, is due to higher concentrations of glucosinolates and saponins in younger leaves in contrast to the older leaves of Barbarea genus. As a response to this phenomenon, herbivores as DBM has developed a strategy of defense against these plant biochemicals. Because there is a lack of full knowledge in understanding bioactive molecules (such as saponins) role in plant defense against plant herbivores. Thus, in this review, we discuss the role of secondary plant metabolites in plant defense mechanisms against the specialist herbivores. In the future, trials by plant breeders could aim at transferring these bioactive molecules against herbivore to cash crops.

Keywords: bioactive molecule; biological management; host plant resistance; plant immunity; plant secondary metabolites; triterpenoids.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Triterpenoids saponins identified in Barbarea vulgaris.

Similar articles

Cited by

References

    1. De Geyter E., Lambert E., Geelen D., Smagghe G. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 2007;1:96–105.
    1. Mugford S.T., Osbourn A. Isoprenoid Synthesis in Plants and Microorganisms. Springer; New York, NY, USA: 2012. Saponin synthesis and function; pp. 405–424.
    1. Moses T., Papadopoulou K.K., Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014;49:439–462. - PMC - PubMed
    1. Augustin J.M., Drok S., Shinoda T., Sanmiya K., Nielsen J.K., Khakimov B., Olsen C.E., Hansen E.H., Kuzina V., Ekstrøm C.T. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol. 2012;160:1881–1895. - PMC - PubMed
    1. Khakimov B., Kuzina V., Erthmann P.Ø., Fukushima E.O., Augustin J.M., Olsen C.E., Scholtalbers J., Volpin H., Andersen S.B., Hauser T.P. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J. 2015;84:478–490. - PubMed