Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 31;19(1):487.
doi: 10.1186/s12879-019-4114-0.

Laboratory characterisation of Salmonella enterica serotype Typhi isolates from Zimbabwe, 2009-2017

Affiliations

Laboratory characterisation of Salmonella enterica serotype Typhi isolates from Zimbabwe, 2009-2017

Tapfumanei Mashe et al. BMC Infect Dis. .

Abstract

Background: Typhoid fever remains a major public health problem in Zimbabwe with recurrent outbreaks reported since 2009. To provide guidance on appropriate treatment choice in order to minimise the morbidity and mortality of typhoid fever and prevent large scale outbreaks, we investigated the antimicrobial susceptibility patterns, prevalence of Salmonella enterica serotype Typhi (S. Typhi) H58 haplotype and molecular subtypes of S. Typhi from outbreak strains isolated from 2009 to 2017 in Zimbabwe and compared these to isolates from neighbouring African countries.

Methods: Antimicrobial susceptibility testing was performed on all isolates using the disk diffusion, and E-Test, and results were interpreted using Clinical and Laboratory Standards Institute (CLSI) guidelines (2017). S. Typhi H58 haplotype screening was performed on 161 (58.3%) isolates. Pulsed-field gel electrophoresis (PFGE) was performed on 91 selected isolates across timelines using antibiotic susceptibility results and geographical distribution (2009 to 2016).

Results: Between 2009 and 2017, 16,398 suspected cases and 550 confirmed cases of typhoid fever were notified in Zimbabwe. A total of 276 (44.6%) of the culture-confirmed S. Typhi isolates were analysed and 243 isolates (88.0%) were resistant to two or more first line drugs (ciprofloxacin, ampicillin and chloramphenicol) for typhoid. The most common resistance was to ampicillin-chloramphenicol (172 isolates; 62.3%). Increasing ciprofloxacin resistance was observed from 2012 to 2017 (4.2 to 22.0%). Out of 161 screened isolates, 150 (93.2%) were haplotype H58. Twelve PFGE patterns were observed among the 91 isolates analysed, suggesting some diversity exists among strains circulating in Zimbabwe. PFGE analysis of 2013, 2014 and 2016 isolates revealed a common strain with an indistinguishable PFGE pattern (100% similarity) and indistinguishable from PFGE patterns previously identified in strains isolated from South Africa, Zambia and Tanzania.

Conclusions: Resistance to first line antimicrobials used for typhoid fever is emerging in Zimbabwe and the multidrug resistant S. Typhi H58 haplotype is widespread. A predominant PFGE clone circulating in Zimbabwe, South Africa, Zambia and Tanzania, argues for cross-border cooperation in the control of this disease.

Keywords: Antimicrobial resistance; Molecular epidemiology; Molecular sub-typing; PFGE; Salmonella Typhi; Zimbabwe.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Number of typhoid fever cases notified in Zimbabwe, 2009–2017
Fig. 2
Fig. 2
Antimicrobial susceptibility of S. Typhi isolates in Zimbabwe (2012–2017). CIP Ciprofloxacin, TET Tetracyline, NAL Nalidixic acid, CTX Ceftriaxone, C Chloramphenicol, AMP Ampicillin, AZ Azithromycin, Sens Sensitive, Inter Intermediate, Resist Resistance
Fig. 3
Fig. 3
Distribution of S. Typhi PFGE clone in South Africa, Tanzania, Zambia and Zimbabwe, 2006–2017

Similar articles

Cited by

References

    1. Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World Health Organ. 2004;82:346–353. - PMC - PubMed
    1. Tarupiwa A, Tapera S, Mtapuri-Zinyowera S, Gumbo P, Ruhanya V, Gudza-Mugabe M, Majuru NX, Chin’ombe N. Evaluation of TUBEX-TF and OnSite typhoid IgG/IgM combo rapid tests to detect Salmonella enterica serovar Typhi infection during a typhoid outbreak in Harare, Zimbabwe. BMC Res Notes. 2015;8(1):50. doi: 10.1186/s13104-015-1015-1. - DOI - PMC - PubMed
    1. Gilman R, Terminel M, Levine M, Hernandez-Mendoza P, Hornick R. Relative efficacy of blood, urine, rectal swab, bone-marrow, and rose-spot cultures for recovery of Salmonella typhi in typhoid fever. Lancet. 1975;305(7918):1211–1213. doi: 10.1016/S0140-6736(75)92194-7. - DOI - PubMed
    1. Organization WH . Guidelines for the management of typhoid fever. 2011.
    1. Lunguya O, Lejon V, Phoba M-F, Bertrand S, Vanhoof R, Verhaegen J, Smith AM, Keddy KH, Muyembe-Tamfum J-J, Jacobs J. Salmonella typhi in the Democratic Republic of the Congo: fluoroquinolone decreased susceptibility on the rise. PLoS Negl Trop Dis. 2012;6(11):e1921. doi: 10.1371/journal.pntd.0001921. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources