Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 31;21(1):132.
doi: 10.1186/s13075-019-1918-7.

Gout, flares, and allopurinol use: a population-based study

Affiliations

Gout, flares, and allopurinol use: a population-based study

Charlotte Proudman et al. Arthritis Res Ther. .

Abstract

Background: There is a paucity of community-based data regarding the prevalence and impact of gout flares as these may often be self-managed. The aim of this study was to determine the prevalence of self-reported gout and gout flares, the use of urate-lowering therapy (ULT), and the association of gout flares with health-related quality of life (HRQoL) in a large community sample. Covariate associations with flare frequency and allopurinol use were also examined.

Methods: The South Australian Health Omnibus Survey is an annual, face-to-face population-based survey. Data collected in the 2017 survey included self-reported medically diagnosed gout, allopurinol use (first-line ULT in Australia), and gout attacks (flares) in the last 12 months, in addition to sociodemographic variables and health-related quality of life (HRQoL, SF-12). Data were weighted to the Australian Bureau of Statistics 2016 census data to reflect the South Australian population. Participants 25 years and over (n = 2778) were included in the analysis.

Results: The prevalence of gout was 6.5% (95%CI 5.5, 7.5). Amongst participants with gout, 37.1% (95%CI 29.6, 45.3) reported currently using allopurinol, while 23.2% (95%CI 16.9, 21.0) reported prior use (38% discontinuation rate). Frequent flares (≥ 2 in the last year) were reported by 25% of participants with gout and were more likely with younger age, higher body mass index, and current allopurinol use (p < 0.05). The frequency of gout flares was associated with a lower physical HRQoL (p = 0.012). Current allopurinol use was reported by 51% of participants with frequent gout flares.

Conclusion: Flares were frequently reported by people with gout in the community. Gout flares were associated with reduced physical HRQoL. Almost one half of people with frequent gout flares were not receiving allopurinol, and current allopurinol use was associated with frequent gout flares, suggesting undertreated disease and suboptimal use of ULT. Determining covariate associations with flares and ineffective allopurinol use may identify means of improving treatment and reducing flares.

Keywords: Allopurinol; Gout; Gout flares; Population study; Prevalence; Self-reported.

PubMed Disclaimer

Conflict of interest statement

Professor Dalbeth: research grant funding from Amgen and AstraZeneca/Ironwood, speaker fees from Pfizer, Janssen, and Abbvie, and consulting fees from Horizon and Kowa.

Figures

Fig. 1
Fig. 1
Covariates associated with allopurinol use in participants with gout. Legend: a Predicted, population-averaged marginal probabilities for each category of allopurinol use (classified as never, prior, current) use by covariates (stacked bar charts) and b risk difference effect sizes (outcome Helmert contrasts) for covariate associations with allopurinol use, with vertical bars representing 95% confidence intervals. Analysis was performed by multinomial logistic regression
Fig. 2
Fig. 2
Covariate associations with flares in participants with gout. Legend: a Predicted, population-averaged marginal probabilities for each category of flares (classified as 0, 1, ≥ 2) by covariates (stacked bar charts) and b Risk difference effect sizes (outcome Helmert contrasts) for covariate associations with flares, with vertical bars representing 95% confidence intervals. Analysis was performed by multinomial logistic regression

References

    1. Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649–662. doi: 10.1038/nrrheum.2015.91. - DOI - PubMed
    1. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann Rheum Dis. 2015;74(4):661–667. doi: 10.1136/annrheumdis-2013-204463. - DOI - PMC - PubMed
    1. Chen‐Xu Michael, Yokose Chio, Rai Sharan K., Pillinger Michael H., Choi Hyon K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis & Rheumatology. 2019;71(6):991–999. doi: 10.1002/art.40807. - DOI - PMC - PubMed
    1. Ting K, Hill C, Gill T, Tucker G. Prevalence and associations of gout and hyperuricaemia: results from an Australian population-based study. Intern Med J. 2015;45:5. - PubMed
    1. Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Med. 2017;15(1):123. doi: 10.1186/s12916-017-0890-9. - DOI - PMC - PubMed