Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb;168(2):278-288.
doi: 10.1111/ppl.13000. Epub 2019 Jun 25.

Inhibition of NADP-malic enzyme activity by H2 S and NO in sweet pepper (Capsicum annuum L.) fruits

Affiliations

Inhibition of NADP-malic enzyme activity by H2 S and NO in sweet pepper (Capsicum annuum L.) fruits

María A Muñoz-Vargas et al. Physiol Plant. 2020 Feb.

Abstract

NADPH is an essential cofactor in many physiological processes. Fruit ripening is caused by multiple biochemical pathways in which, reactive oxygen and nitrogen species (ROS/RNS) metabolism is involved. Previous studies have demonstrated the differential modulation of nitric oxide (NO) and hydrogen sulfide (H2 S) content during sweet pepper (Capsicum annuum L.) fruit ripening, both of which regulate NADP-isocitrate dehydrogenase activity. To gain a deeper understanding of the potential functions of other NADPH-generating components, we analyzed glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), which are involved in the oxidative phase of the pentose phosphate pathway (OxPPP) and NADP-malic enzyme (NADP-ME). During fruit ripening, G6PDH activity diminished by 38%, while 6PGDH and NADP-ME activity increased 1.5- and 2.6-fold, respectively. To better understand the potential regulation of these NADP-dehydrogenases by H2 S, we obtained a 50-75% ammonium-sulfate-enriched protein fraction containing these proteins. With the aid of in vitro assays, in the presence of H2 S, we observed that, while NADP-ME activity was inhibited by up to 29-32% using 2 and 5 mM Na2 S as H2 S donor, G6PDH and 6PGDH activities were unaffected. On the other hand, NO donors, S-nitrosocyteine (CysNO) and DETA NONOate also inhibited NADP-ME activity by 35%. These findings suggest that both NADP-ME and 6PGDH play an important role in maintaining the supply of NADPH during pepper fruit ripening and that H2 S and NO partially modulate the NADPH-generating system.

PubMed Disclaimer

References

    1. Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, del Río LA, Palma JM, Corpas FJ (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35: 281-295
    1. Airaki M, Leterrier M, Valderrama R, Chaki M, Begara-Morales JC, Barroso JB, del Río LA, Palma JM, Corpas FJ (2015) Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings. Ann Bot 116: 679-693
    1. Alvarez CE, Detarsio E, Moreno S, Andreo CS, Drincovich MF (2012) Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-malic enzyme activity. Plant Cell Physiol 53: 1144-1153
    1. Alvarez CE, Saigo M, Margarit E, Andreo CS, Drincovich MF (2013) Kinetics and functional diversity among the five members of the NADP-malic enzyme family from Zea mays, a C4 species. Photosynth Res 115: 65-80
    1. Arias CL, Andreo CS, Drincovich MF, Gerrard Wheeler MC (2013) Fumarate and cytosolic pH as modulators of the synthesis or consumption of C(4) organic acids through NADP-malic enzyme in Arabidopsis thaliana. Plant Mol Biol 81: 297-307

MeSH terms

LinkOut - more resources