Lentiviral Mediated Gene Silencing in Human Pseudoislet Prepared in Low Attachment Plates
- PMID: 31157773
- PMCID: PMC6870219
- DOI: 10.3791/59578
Lentiviral Mediated Gene Silencing in Human Pseudoislet Prepared in Low Attachment Plates
Abstract
Various genetic tools are available to modulate genes in pancreatic islets of rodents to dissect function of islet genes for diabetes research. However, the data obtained from rodent islets are often not fully reproduced in or applicable to human islets due to well-known differences in islet structure and function between the species. Currently, techniques that are available to manipulate gene expression of human islets are very limited. Introduction of transgene into intact islets by adenovirus, plasmid, and oligonucleotides often suffers from low efficiency and high toxicity. Low efficiency is especially problematic in gene downregulation studies in intact islets, which require high efficiency. It has been known that enzymatically-dispersed islet cells reaggregate in culture forming spheroids termed pseudoislets. Size-controlled reaggregation of human islet cells creates pseudoislets that maintain dynamic first phase insulin secretion after prolonged culture and provide a window to efficiently introduce lentiviral short hairpin RNA (shRNA) with low toxicity. Here, a detailed protocol for the creation of human pseudoislets after lentiviral transduction using two commercially available multiwell plates is described. The protocol can be easily performed and allows for efficient downregulation of genes and assessment of dynamism of insulin secretion using human islet cells. Thus, human pseudoislets with lentiviral mediated gene modulation provide a powerful and versatile model to assess gene function within human islet cells.
Conflict of interest statement
Disclosures
The authors have nothing to disclose.
Figures
References
-
- Hong H, Jo J, Sin SJ Stable and flexible system for glucose homeostasis. Physiological Review E covering statistical, nonlinear, biological, and soft matter physic. 88 (3), 032711 (2013). - PubMed
-
- Arrojo e Drigo R et al. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia. 58 (10), 2218–2228 (2015). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources