Distributed Multi-Scale Calibration of Low-Cost Ozone Sensors in Wireless Sensor Networks
- PMID: 31159289
- PMCID: PMC6604074
- DOI: 10.3390/s19112503
Distributed Multi-Scale Calibration of Low-Cost Ozone Sensors in Wireless Sensor Networks
Abstract
New advances in sensor technologies and communications in wireless sensor networks have favored the introduction of low-cost sensors for monitoring air quality applications. In this article, we present the results of the European project H2020 CAPTOR, where three testbeds with sensors were deployed to capture tropospheric ozone concentrations. One of the biggest challenges was the calibration of the sensors, as the manufacturer provides them without calibrating. Throughout the paper, we show how short-term calibration using multiple linear regression produces good calibrated data, but instead produces biases in the calculated long-term concentrations. To mitigate the bias, we propose a linear correction based on Kriging estimation of the mean and standard deviation of the long-term ozone concentrations, thus correcting the bias presented by the sensors.
Keywords: air pollution sensors; calibration; error estimation; low-cost sensors; wireless sensor networks.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



















References
-
- Barcelo-Ordinas J.M., Chanet J.P., Hou K.M., García-Vidal J. Precision Agriculture’13. Springer; Cham, Switerzerland: 2013. A survey of wireless sensor technologies applied to precision agriculture; pp. 801–808.
-
- Kim Y., Park H., Srivastava M.B. A longitudinal study of vibration-based water flow sensing. ACM Trans. Sens. Netw. 2012;9:8. doi: 10.1145/2379799.2379807. - DOI
-
- Tan R., Xing G., Yuan Z., Liu X., Yao J. System-level Calibration for Data Fusion in Wireless Sensor Networks. ACM Trans. Sens. Netw. 2013;9:28:1–28:27. doi: 10.1145/2480730.2480731. - DOI
-
- Hasenfratz D., Saukh O., Walser C., Hueglin C., Fierz M., Arn T., Beutel J., Thiele L. Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mob. Comput. 2015;16:268–285. doi: 10.1016/j.pmcj.2014.11.008. - DOI
Grants and funding
- TIN2016-78473-C3-1-R/Ministerio de Economía y Competitividad
- 2017SGR-990/Agència de Gestió d'Ajuts Universitaris i de Recerca
- 2017-SGR-44,/Agència de Gestió d'Ajuts Universitaris i de Recerca
- N° 688110 (CAPTOR project)/Horizon 2020 Framework Programme
- CGL2017-82093-ERC/Agencia Estatal de Investigación
LinkOut - more resources
Full Text Sources