Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep;4(9):1582-1591.
doi: 10.1038/s41564-019-0468-8. Epub 2019 Jun 3.

An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection

Affiliations

An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection

Cong Jiang et al. Nat Microbiol. 2019 Sep.

Abstract

The cAMP-PKA and MAP kinase pathways are essential for plant infection in the wheat head blight fungus Fusarium graminearum. To identify upstream receptors of these well-conserved signalling pathways, we systematically characterized the 105 G-protein-coupled receptor (GPCR) genes. Although none were required for vegetative growth, five GPCR genes (GIV1-GIV5) significantly upregulated during plant infection were important for virulence. The giv1 mutant was defective in the formation of specialized infection structures known as infection cushions, which was suppressed by application of exogenous cAMP and dominant active FST7 MEK kinase. GIV1 was important for the stimulation of PKA and Gpmk1 MAP kinase by compounds in wheat spikelets. GIV2 and GIV3 were important for infectious growth after penetration. Invasive hyphae of the giv2 mutant were defective in cell-to-cell spreading and mainly grew intercellularly in rachis tissues. Interestingly, the GIV2-GIV5 genes form a phylogenetic cluster with GIV6, which had overlapping functions with GIV5 during pathogenesis. Furthermore, the GIV2-GIV6 cluster is part of a 22-member subfamily of GPCRs, with many of them having in planta-specific upregulation and a common promoter element; however, only three subfamily members are conserved in other fungi. Taken together, F. graminearum has an expanded subfamily of infection-related GPCRs for regulating various infection processes.

PubMed Disclaimer

References

    1. Goswami, R. S. & Kistler, H. C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5, 515–525 (2004). - DOI
    1. Brown, N. A., Urban, M., Van De Meene, A. M. L. & Hammond-Kosack, K. E. The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol. 114, 555–571 (2010). - DOI
    1. Bai, G. H. & Shaner, G. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42, 135–161 (2004). - DOI
    1. Strange, R., Majer, J. & Smith, H. The isolation and identification of choline and betaine as the two major components in anthers and wheat germ that stimulate Fusarium graminearum in vitro. Physiol. Plant Pathol. 4, 277–290 (1974). - DOI
    1. Urban, M., Daniels, S., Mott, E. & Hammond-Kosack, K. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant J. 32, 961–973 (2002). - DOI

Publication types

MeSH terms

Substances

LinkOut - more resources