Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 2;476(13):1889-1909.
doi: 10.1042/BCJ20190181.

The search for candidate genes associated with natural variation of grain Zn accumulation in barley

Affiliations

The search for candidate genes associated with natural variation of grain Zn accumulation in barley

Amelie Detterbeck et al. Biochem J. .

Abstract

Combating hidden hunger through molecular breeding of nutritionally enriched crops requires a better understanding of micronutrient accumulation. We studied natural variation in grain micronutrient accumulation in barley (Hordeum vulgare L.) and searched for candidate genes by assessing marker-trait associations (MTAs) and by analyzing transcriptional differences between low and high zinc (Zn) accumulating cultivars during grain filling. A collection of 180 barley lines was grown in three different environments. Our results show a pronounced variation in Zn accumulation, which was under strong genotype influence across different environments. Genome-wide association mapping revealed 13 shared MTAs. Across three environments, the most significantly associated marker was on chromosome 2H at 82.8 cM and in close vicinity to two yellow stripe like (YSL) genes. A subset of two pairs of lines with contrasting Zn accumulation was chosen for detailed analysis. Whole ears and flag leaves were analyzed 15 days after pollination to detect transcriptional differences associated with elevated Zn concentrations in the grain. A putative α-amylase/trypsin inhibitor CMb precursor was decidedly higher expressed in high Zn cultivars in whole ears in all comparisons. Additionally, a gene similar to barley metal tolerance protein 5 (MTP5) was found to be a potential candidate gene.

Keywords: barley; genome-wide association mapping; grain; natural variation; transcript analysis; zinc.

PubMed Disclaimer

Publication types

LinkOut - more resources