Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May 30:24:36.
doi: 10.1186/s11658-019-0158-9. eCollection 2019.

The role of different SIRT1-mediated signaling pathways in toxic injury

Affiliations
Review

The role of different SIRT1-mediated signaling pathways in toxic injury

Zhihua Ren et al. Cell Mol Biol Lett. .

Abstract

Common environmental pollutants and drugs encountered in everyday life can cause toxic damage to the body through oxidative stress, inflammatory stimulation, induction of apoptosis, and inhibition of energy metabolism. Silent information regulator 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, is a member of the evolutionarily highly conserved Sir2 (silent information regulator 2) superprotein family, which is located in the nucleus and cytoplasm. It can deacetylate protein substrates in various signal transduction pathways to regulate gene expression, cell apoptosis and senescence, participate in the process of neuroprotection, energy metabolism, inflammation and the oxidative stress response in living organisms, and plays an important role in toxic damage caused by toxicants and in the process of SIRT1 activator/inhibitor antagonized toxic damage. This review summarizes the role that SIRT1 plays in toxic damage caused by toxicants via its interactions with protein substrates in certain signaling pathways.

Keywords: SIRT1; SIRT1 activator; Signaling pathway; Toxicant.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThis article has not been published elsewhere in whole or in part. All authors have read and approved the content, and agree to submit for consideration for publication in the journal. The authors declared no conflict of interest. All work complies with the Ethical Policies of Cellular & Molecular Biology Letters and has been conducted under internationally accepted ethical standards after relevant ethical review.

Figures

Fig. 1
Fig. 1
The role of different SIRT1-mediated signaling pathways

Similar articles

Cited by

References

    1. Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014;25(3):138–145. doi: 10.1016/j.tem.2013.12.001. - DOI - PMC - PubMed
    1. Chen YR, Lai YL, Lin SD, Li XT, Fu YC, Xu WC. SIRT1 interacts with metabolic transcriptional factors in the pancreas of insulin-resistant and calorie-restricted rats. Mol Biol Rep. 2013;40(4):3373–3380. doi: 10.1007/s11033-012-2412-3. - DOI - PubMed
    1. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K. Oxidative stress, Prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:1–19. doi: 10.1155/2014/761264. - DOI - PMC - PubMed
    1. Yuan W. Effects of resveratrol on oxidative stress in lead-induced AD-like lesions in mice. Zhengzhou Univ. 2014.
    1. Chen D, Liu XH, Zeng XX, Gou QD, Xie C, Dong YT, et al. Expression of silencing information regulators in brain tissue of rats with chronic fluorosis and its relationship with learning and memory ability. Zhong Guo Di Fang Bing Xue Za Zhi. 2018;37(4):265.