Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 5;6(1):19.
doi: 10.1186/s40779-019-0206-9.

Contemporary approaches to visual prostheses

Affiliations
Review

Contemporary approaches to visual prostheses

Rebecca M Mirochnik et al. Mil Med Res. .

Erratum in

Abstract

Visual prostheses serve to restore visual function following acquired blindness. Acquired blindness (as opposed to congenital blindness) has many causes, including diseases such as retinitis pigmentosa, glaucoma, and macular degeneration, or trauma such as caused by automobile accident or blast damage from explosions. Many of the blindness-causing diseases target the retina or other ocular structure. Often, despite the loss of sensitivity to light, the remainder of the visual pathway is still functional, enabling electrical devices to deliver effective and meaningful visual information to the brain via arrays of electrodes. These arrays can be placed in any part of the early visual pathway, such as the retina, optic nerve, lateral geniculate nucleus, or visual cortex. A camera or other imaging source is used to drive electrical stimulation of remaining healthy cells or structures to create artificial vision and provide restoration of function. In this review, each approach to visual prostheses is described, including advantages and disadvantages as well as assessments of the current state of the art. Most of the work to-date has been targeting stimulation of (a) the retina, with three devices approved for general use and two more in clinical testing; (b) the lateral geniculate nucleus, with efforts still in the pre-clinical stage; and (c) the cortex, with three devices in clinical testing and none currently approved for general use despite the longest history of investigation of the three major approaches. Each class of device has different medical indications, and different levels of invasiveness required for implantation. All contemporary devices deliver relatively poor vision. There has been remarkable progress since the first proof-of-concept demonstration that used stimulation of the primary visual cortex, with the field exploring all viable options for restoration of function. Much of the progress has been recent, driven by advances in microelectronics and biocompatibility. With three devices currently approved for general use in various parts of the world, and a handful of additional devices well along in the pipeline toward approval, prospects for wide deployment of a device-based therapy to treat acquired blindness are good.

Keywords: Artificial vision; Blindness; Visual prosthesis.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
A ventral view of the human brain showing the early visual pathway. Normally, light enters the system through the optics of the eyes, and is focused on the retina where photons are converted to neural activity. From the retina, this activity flows down the optic nerves and through the chiasm, along the optic tract to the lateral geniculate nucleus of the thalamus (LGN). The chiasm serves to sort fibers from the two eyes such that signals are combined by visual hemifield (both right hemifields go to the left LGN, and vice-versa). From the LGN, signals then flow through the optic radiation to the primary visual cortex (V1), and on to the higher visual areas

References

    1. Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e888–e897. - PubMed
    1. Donaldson N, Brindley GS. The historical foundations of bionics//Donaldson N, Brindley GS. Eds. Neurobionics: the biomedical engineering of neural prostheses. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 1–37.
    1. Lewis PM, Rosenfeld JV. Electrical stimulation of the brain and the development of cortical visual prostheses: an historical perspective. Brain Res. 2016;1630:208–224. - PubMed
    1. Foerster O. Beiträge zur Pathophysiologie der Sehbahn und der Sehsphäre. J Psychol Neurol. 1929;39:463–485.
    1. Krause F, Schum H. Die epileptischen Erkrankungen. In: Kuttner H, editor. Neue Deutsche Chirurgie. Stuttgart: Enke; 1931. pp. 482–486.

Publication types