Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Jun 6;19(1):543.
doi: 10.1186/s12885-019-5642-0.

Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis

Affiliations
Meta-Analysis

Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis

Vicky C Chang et al. BMC Cancer. .

Abstract

Background: Iron has been shown to promote breast carcinogenesis in animal models through generation of oxidative stress and interaction with estrogen. Heme iron, which is found exclusively in animal-sourced foods, is suggested to have a more detrimental effect. Epidemiological evidence of the association between iron and breast cancer risk remains inconclusive and has not been comprehensively summarized. This systematic review and meta-analysis evaluated associations between both iron intake and body iron status and breast cancer risk.

Methods: Four electronic databases (MEDLINE, EMBASE, CINAHL, and Scopus) were searched up to December 2018 for studies assessing iron intake and/or biomarkers of iron status in relation to breast cancer risk. Using random-effects meta-analyses, pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated comparing the highest vs. lowest category of each iron measure. Dose-response meta-analyses were also performed to investigate linear and nonlinear associations.

Results: A total of 27 studies were included in the review, of which 23 were eligible for meta-analysis of one or more iron intake/status measures. Comparing the highest vs. lowest category, heme iron intake was significantly associated with increased breast cancer risk, with a pooled RR of 1.12 (95% CI: 1.04-1.22), whereas no associations were found for dietary (1.01, 95% CI: 0.89-1.15), supplemental (1.02, 95% CI: 0.91-1.13), or total (0.97, 95% CI: 0.82-1.14) iron intake. Associations of iron status indicators with breast cancer risk were generally in the positive direction; however, a significant pooled RR was found only for serum/plasma levels (highest vs. lowest) of iron (1.22, 95% CI: 1.01-1.47), but not for ferritin (1.13, 95% CI: 0.78-1.62), transferrin saturation (1.16, 95% CI: 0.91-1.47), or total iron-binding capacity (1.10, 95% CI: 0.97-1.25). In addition, a nonlinear dose-response was observed for heme iron intake and serum iron (both Pnonlinearity < 0.05).

Conclusions: Heme iron intake and serum iron levels may be positively associated with breast cancer risk. Although associations were modest, these findings may have public health implications given the widespread consumption of (heme) iron-rich foods. In light of methodological and research gaps identified, further research is warranted to better elucidate the relationship between iron and breast cancer risk.

Keywords: Breast cancer; Dose-response; Ferritin; Heme iron; Iron intake; Iron status; Meta-analysis; Systematic review.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram of study selection for the systematic review and meta-analysis. *One study reporting on toenail iron [69] and the other on breast tissue iron [70] as the only iron measure
Fig. 2
Fig. 2
Forest plot of associations between iron intake (highest vs. lowest category) and breast cancer risk. The diamonds represent the pooled relative risks and corresponding 95% confidence intervals obtained from random-effects meta-analyses. The dots and horizontal lines represent the relative risks and corresponding 95% confidence intervals of individual studies, and the sizes of shaded squares are proportional to the weight contributed by each study to the pooled estimate. I2 is the proportion of the total variability attributable to between-study heterogeneity, and P is from Cochran’s Q test evaluating the presence of heterogeneity
Fig. 3
Fig. 3
Dose-response curves for intakes of (a) dietary iron; (b) total iron; and (c) heme iron in relation to breast cancer risk. Data were modeled using random-effects restricted cubic spline models with three knots fixed at the 10th, 50th, and 90th percentiles. The solid lines represent the fitted relative risks for the nonlinear trend, and the dashed lines represent pointwise 95% confidence intervals
Fig. 4
Fig. 4
Forest plot of associations between serum/plasma indicators of body iron status (highest vs. lowest category) and breast cancer risk. The diamonds represent the pooled relative risks and corresponding 95% confidence intervals obtained from random-effects meta-analyses. The dots and horizontal lines represent the relative risks and corresponding 95% confidence intervals of individual studies, and the sizes of shaded squares are proportional to the weight contributed by each study to the pooled estimate. I2 is the proportion of the total variability attributable to between-study heterogeneity, and P is from Cochran’s Q test evaluating the presence of heterogeneity. *Stevens et al. 2011 [71] reported separate estimates for premenopausal (pre/post) and postmenopausal (post/post) ferritin levels in relation to postmenopausal breast cancer risk; Gaur et al. 2013 [72] reported separate estimates for premenopausal (pre) and postmenopausal (post) breast cancer
Fig. 5
Fig. 5
Dose-response curves for serum/plasma (a) ferritin and (b) iron in relation to breast cancer risk. Data were modeled using random-effects restricted cubic spline models with three knots fixed at the 10th, 50th, and 90th percentiles. The solid lines represent the fitted relative risks for the nonlinear trend, and the dashed lines represent pointwise 95% confidence intervals

References

    1. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164–174. - PMC - PubMed
    1. Galaris D, Pantopoulos K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci. 2008;45(1):1–23. doi: 10.1080/10408360701713104. - DOI - PubMed
    1. Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci. 2009;100(1):9–16. doi: 10.1111/j.1349-7006.2008.01001.x. - DOI - PMC - PubMed
    1. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13(5):342–355. doi: 10.1038/nrc3495. - DOI - PMC - PubMed
    1. Beguin Y, Aapro M, Ludwig H, Mizzen L, Osterborg A. Epidemiological and nonclinical studies investigating effects of iron in carcinogenesis – a critical review. Crit Rev Oncol Hematol. 2014;89(1):1–15. doi: 10.1016/j.critrevonc.2013.10.008. - DOI - PubMed