Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep:214:119223.
doi: 10.1016/j.biomaterials.2019.119223. Epub 2019 May 24.

Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy

Affiliations

Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy

Xiaoyan Ma et al. Biomaterials. 2019 Sep.

Abstract

Nanozymes with excellent enzyme-mimicking catalytic property are playing an increasingly significant role in tumor diagnosis and therapy. Fe-metal organic framework nanoparticles (MIL-101(Fe) NPs) are prepared as nanozymes to generate reactive oxygen species (ROS) and induce cancer cell death by catalyzing endogenous substances in tumor microenvironment. Abundant stimuli-responsive hydroxyl radicals (·OH) are accelerated to generate in the presence of microwave irradiation, realizing microwave enhancing dynamic therapy (MEDT). Moreover, MIL-101(Fe) NPs possess biodegradability and bioresponsibility, which exhibit favourable properties of metabolism and non-toxic accumulation comparing with inorganic nanozymes. Fluorescent gold nanoclusters (BSA-Au NCs) are rapidly coupled with the surface of MIL-101(Fe) NPs to obtain MIL-101(Fe)@BSA-AuNCs NPs. MIL-101(Fe)@BSA-AuNCs NPs with magnetic resonance imaging (MRI) and fluorescent imaging (FI) not only image accurately for the site of tumor, but also monitor dynamic distribution process of MIL-101(Fe) in vivo. The signal intensity of FI and MRI reaches maximum at 1 h in the liver and 5 h in the tumor. Ionic liquid (IL) is also loaded into MIL-101(Fe)@BSA-AuNCs NPs as microwave sensitive reagents for microwave thermal therapy (MTT). This work synthesizes the nanozymes that possess degradability, microwave sensitivity and dual-mode imaging to achieve the combination of MTT and MEDT against tumor. Experiment result in vivo confirms that the kill rate of tumor is up to 96.65%, showing an outstanding anti-tumor efficacy.

Keywords: Cancer therapy; Enzyme mimics; Metal-organic framework; Microwave; Nanozyme.

PubMed Disclaimer

Publication types

LinkOut - more resources