Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2019 Jul 18;37(31):4407-4413.
doi: 10.1016/j.vaccine.2019.05.069. Epub 2019 Jun 6.

A randomized, open-labelled, non-inferiority phase 4 clinical trial to evaluate the immunogenicity and safety of the live, attenuated, oral rotavirus vaccine, ROTAVAC® in comparison with a licensed rotavirus vaccine in healthy infants

Affiliations
Free article
Clinical Trial

A randomized, open-labelled, non-inferiority phase 4 clinical trial to evaluate the immunogenicity and safety of the live, attenuated, oral rotavirus vaccine, ROTAVAC® in comparison with a licensed rotavirus vaccine in healthy infants

Raches Ella et al. Vaccine. .
Free article

Abstract

Background: ROTAVAC® (nHRV), derived naturally from the human 116E rotavirus (RV) neonatal strain, was licensed in India in 2015 based on promising results of a phase 3, safety and efficacy vaccine trial. As a pre-requisite for WHO prequalification, we compared the immunogenicity and safety of ROTAVAC® to those of a WHO-prequalified, Rotarix®.

Methods: We conducted a multicentre, open-labeled, randomized phase 4 clinical trial where 464 infants, 6-8 weeks of age were equally randomized to receive as licensed, the complete regimen of ROTAVAC® (3 doses; Group I) or Rotarix® (2 doses; Group II). Antibody responses (serum anti-RV Immunoglobulin A [IgA]) were measured by enzyme-linked immunosorbent assay (ELISA). The primary analysis was an assessment of non-inferiority of ROTAVAC® to Rotarix® for geometric mean concentration (GMC) for infants who received the complete regimen of either vaccine.

Results: The GMC for Group I was 20.4 (95%CI: 17.6, 23.6) and that for Group II was 24.8 (95%CI: 20.3, 30.3), the GMC ratio was 0.82 (95% CI: 0.64, 1.05), thus meeting the non-inferiority criterion. Site-wise analysis of GMC titres revealed that one site had a peculiar pre-vaccination titre affecting only ROTAVAC® post-vaccination GMCs. Seroconversion rates were 35.3% (95%CI: 29.0, 41.9) and 31.0% (95%CI: 25.1, 37.4) for Groups I and Group II, respectively. There was no substantive difference in safety profiles between both vaccines.

Conclusions: The complete regimen of ROTAVAC® demonstrated immunological non-inferiority to the complete regimen of Rotarix® with a clinically acceptable safety profile. Because the demand for RV vaccines is increasing as more countries are expanding their immunization schedules, the lack of need of a buffering agent, low dose volume (0.5 mL), non-interference with other concomitantly administered vaccines, and conformance with WHO-prequalification requirements provide ROTAVAC® the potential for widespread global usage. Post completion of this study, ROTAVAC® is now a WHO-prequalified vaccine.

Clinical trials registration: (CTRI Number: CTRI/2015/12/006428).

Keywords: Diarrhoea; Immunogenicity; Oral vaccine; ROTAVAC; RV1; Rotarix; Rotavirus vaccine; nHRV.

PubMed Disclaimer

Publication types

MeSH terms