Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1987 Nov;49(5):1341-7.
doi: 10.1111/j.1471-4159.1987.tb00997.x.

Lipid metabolism in electroplax

Affiliations
Comparative Study

Lipid metabolism in electroplax

N P Rotstein et al. J Neurochem. 1987 Nov.

Abstract

The in vivo labeling of electrocyte lipids is followed after injection of radioactive glycerol and two fatty acids, oleate and arachidonate, into the electric organ of an elasmobranch (Discopyge tschudii). De novo synthesis of lipids and acyl-exchange reactions are operative in the electrocyte. The three precursors are preferentially incorporated into phosphatidylcholine, phosphatidylinositol, and triacylglycerols. The highest specific activities are attained by triacylglycerols and polyphosphoinositides. Electrocyte stacks from electric organ show an efficient and continuous esterification of oleate and arachidonate into lipids after several hours of incubation. Except for an apparently more active labeling of triacylglycerols, which is attributed to the larger availability of free fatty acid precursors under the in vitro experimental conditions, the pattern of lipid labeling is similar to that attained in vivo. 32P-labeled lipids are also steadily produced in electrocyte stacks (24 h of incubation with [32P]phosphate) using glucose as the sole exogenous source of energy. Polyphosphoinositides are the lipids preferentially labeled. The ability to sustain the labeling of lipids under in vitro conditions renders isolated electrocyte stacks an interesting model for future research on lipid involvement in cholinergic function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources