Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct;116(10):2662-2673.
doi: 10.1002/bit.27089. Epub 2019 Jul 9.

Morphology engineering of Aspergillus oryzae for l-malate production

Affiliations

Morphology engineering of Aspergillus oryzae for l-malate production

Xiulai Chen et al. Biotechnol Bioeng. 2019 Oct.

Abstract

Aspergillus oryzae is a competitive natural producer for organic acids, but its production capacity is closely correlated with a specific morphological type. Here, morphology engineering was used for tailoring A. oryzae morphology to enhance l-malate production. Specifically, correlation between A. oryzae morphology and l-malate fermentation was first conducted, and the optimal range of the total volume of pellets in a unit volume of fermentation broth (V value) for l-malate production was 120-130 mm3 /ml. To achieve this range, A. oryzae morphology was improved by controlling the variation of operational parameters, such as agitation speed and aeration rate, and engineered by optimizing the expression of cell division cycle proteins such as tyrosine-protein phosphatase (CDC14), anaphase promoting complex/cyclosome activator protein (CDC20), and cell division control protein 45 (CDC45). By controlling the strength of CDC14 at a medium level, V value fell into the optimal range of V value and the final engineered strain A. oryzae CDC14(3) produced up to 142.5 g/L l-malate in a 30-L fermenter. This strategy described here lays a good foundation for industrial production of l-malate in the future, and opens a window to develop filamentous fungi as cell factories for production of other chemicals.

Keywords: Aspergillus oryzae; l-malate; metabolic engineering; morphology engineering.

PubMed Disclaimer

References

Publication types

MeSH terms

LinkOut - more resources