Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan;42(3):377-387.
doi: 10.1080/09593330.2019.1629183. Epub 2019 Jun 20.

Rapidly and highly efficient degradation of tetracycline hydrochloride in wastewater by 3D IO-TiO2-CdS nanocomposite under visible light

Affiliations

Rapidly and highly efficient degradation of tetracycline hydrochloride in wastewater by 3D IO-TiO2-CdS nanocomposite under visible light

Chao Lv et al. Environ Technol. 2021 Jan.

Abstract

Tetracycline hydrochloride as an environmental pollutant is biologically toxic and highly difficult to degrade. To solve this problem, an efficient catalyst IO-TiO2-CdS composite with honeycomb-like three-dimensional (3D) inverse opal TiO2 (IO-TiO2) and cadmium sulphide (CdS) was synthesized and applied in the degradation of tetracycline hydrochloride in this paper. More than 99% of the tetracycline hydrochloride (30 mg/L) can be degraded by IO-TiO2-CdS (30 mg) within 20 min under visible light irradiation. Surprisingly, the naphthol rings can be opened and degraded to alkane with a minimum molecular weight of 60, which is the smallest fragment among all publications. The three-dimensional ordered macroporous (3DOM) structure of IO-TiO2 improves the utilization of light via the slow photon effect. Meanwhile, the addition of CdS enhances the degradation efficiency of tetracycline by broadening the range of absorption spectrum and improving the separation of charge carrier on the catalyst. In addition to the degradation of tetracycline hydrochloride, IO-TiO2-CdS also shows a good degradation efficiency of Rhodamine B (RhB). This work provides a promising approach to construct visible light response photocatalysts with non-noble metal for efficient degradation of wastewater pollutants.

Keywords: Tetracycline; efficient; environment; inverse opal-TiO2-CdS; photocatalysis.

PubMed Disclaimer

LinkOut - more resources