Utilizing Carbonyl Coordination of Native Amides for Palladium-Catalyzed C(sp3 )-H Olefination
- PMID: 31185132
- PMCID: PMC6684442
- DOI: 10.1002/anie.201906075
Utilizing Carbonyl Coordination of Native Amides for Palladium-Catalyzed C(sp3 )-H Olefination
Abstract
PdII -catalyzed C(sp3 )-H olefination of weakly coordinating native amides is reported. Three major drawbacks of previous C(sp3 )-H olefination protocols, 1) in situ cyclization of products, 2) incompatibility with α-H-containing substrates, and 3) installation of exogenous directing groups, are addressed by harnessing the carbonyl coordination ability of amides to direct C(sp3 )-H activation. The method enables direct C(sp3 )-H functionalization of a wide range of native amide substrates, including secondary, tertiary, and cyclic amides, for the first time. The utility of this process is demonstrated by diverse transformations of the olefination products.
Keywords: C−H activation; Mizoroki-Heck reaction; amides; ligand design; palladium.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures


Similar articles
-
Pd-Catalyzed C(sp2)-H olefination: synthesis of N-alkylated isoindolinone scaffolds from aryl amides of amino acid esters.Org Biomol Chem. 2021 Dec 1;19(46):10097-10104. doi: 10.1039/d1ob01997j. Org Biomol Chem. 2021. PMID: 34791004
-
Pd(II)-catalyzed C-H functionalizations directed by distal weakly coordinating functional groups.J Am Chem Soc. 2015 Apr 8;137(13):4391-7. doi: 10.1021/ja5126897. Epub 2015 Mar 24. J Am Chem Soc. 2015. PMID: 25768039 Free PMC article.
-
Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.Acc Chem Res. 2008 Nov 18;41(11):1474-85. doi: 10.1021/ar800038e. Acc Chem Res. 2008. PMID: 18783256
-
Recent trends in Pd-catalyzed remote functionalization of carbonyl compounds.Org Biomol Chem. 2014 Jan 14;12(2):233-41. doi: 10.1039/c3ob42050g. Org Biomol Chem. 2014. PMID: 24263253 Review.
-
A Simple and Versatile Amide Directing Group for C-H Functionalizations.Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10578-99. doi: 10.1002/anie.201600791. Epub 2016 Aug 1. Angew Chem Int Ed Engl. 2016. PMID: 27479708 Free PMC article. Review.
Cited by
-
Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp3)-H Bonds.Chem Rev. 2021 Dec 22;121(24):14957-15074. doi: 10.1021/acs.chemrev.1c00519. Epub 2021 Oct 29. Chem Rev. 2021. PMID: 34714620 Free PMC article. Review.
-
Transition-Metal-Catalyzed Annulations Involving the Activation of C(sp3 )-H Bonds.Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202112848. doi: 10.1002/anie.202112848. Epub 2021 Dec 2. Angew Chem Int Ed Engl. 2022. PMID: 34699657 Free PMC article. Review.
-
Distal γ-C(sp3 )-H Olefination of Ketone Derivatives and Free Carboxylic Acids.Angew Chem Int Ed Engl. 2020 Jul 27;59(31):12853-12859. doi: 10.1002/anie.202003271. Epub 2020 Jun 5. Angew Chem Int Ed Engl. 2020. PMID: 32385966 Free PMC article.
-
Hexafluoroisopropanol: the magical solvent for Pd-catalyzed C-H activation.Chem Sci. 2021 Feb 10;12(11):3857-3870. doi: 10.1039/d0sc06937j. Chem Sci. 2021. PMID: 34163654 Free PMC article. Review.
-
Pd(II)-Catalyzed Synthesis of Bicyclo[3.2.1] Lactones via Tandem Intramolecular β-C(sp3)-H Olefination and Lactonization of Free Carboxylic Acids.J Am Chem Soc. 2022 Jul 13;144(27):11955-11960. doi: 10.1021/jacs.2c04195. Epub 2022 Jun 28. J Am Chem Soc. 2022. PMID: 35763801 Free PMC article.
References
-
- Mizoroki T, Mori K, Ozaki A, Bull. Chem. Soc. Jpn 1971, 44, 581;
- Heck RF, Nolley JP, J. Org. Chem 1972, 37, 2320.
-
-
For reviews on the synthetic application of the Mizoroki-Heck reaction, see:
- Nicolaou KC, Bulger PG, Sarlah D, Angew. Chem. Int. Ed 2005, 44, 4442; - PubMed
- Torborg C, Beller M, Adv. Synth. Catal 2009, 351, 3027.
-
-
- Ozawa F, Ito T, Yamamoto A, J. Am. Chem. Soc 1980, 102, 6457;
- Ariafard A, Lin Z, Organometallics 2006, 25, 4030;
-
For review on transition metal catalysis with alkyl halides, see:
- Frisch AC, Beller M, Angew. Chem. Int. Ed 2005, 44, 674. - PubMed
-
-
For examples using palladium catalysis, see:
- Bloome KS, McMahen RL, Alexanian EJ, J. Am. Chem. Soc 2011, 133, 20146; - PubMed
- McMahon CM, Alexanian EJ, Angew. Chem. Int. Ed 2014, 53, 5974; - PubMed
- Kurandina D, Parasram M, Gevorgyan V, Angew. Chem. Int. Ed 2017, 56, 14212; - PMC - PubMed
- Wang G-Z, Shang R, Cheng W-M, Fu Y, J. Am. Chem. Soc 2017, 139, 18307; - PubMed
- Kurandina D, Rivas M, Radzhabov M, Gevorgyan V, Org. Lett 2018, 20, 357; - PMC - PubMed
- Chuentragool P, Yadagiri D, Morita T, Sarkar S, Parasram M, Wang Y, Gevorgyan V, Angew. Chem. Int. Ed 2019, 58, 1794; - PMC - PubMed
-
For cobalt catalysis, see:
- Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, J. Am. Chem. Soc 2002, 124, 6514; - PubMed
- Weiss ME, Kreis LM, Lauber A, Carreira EM, Angew. Chem. Int. Ed 2011, 50, 11125; - PubMed
-
For review, see:
- Kurandina D, Chuentragool P, Gevorgyan V, Synthesis 2019, 51, 985. - PMC - PubMed
-
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources