Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 26;21(25):13668-13678.
doi: 10.1039/c8cp06739b.

Isomerization of cyanopropyne in solid argon

Affiliations
Free article

Isomerization of cyanopropyne in solid argon

Thomas Custer et al. Phys Chem Chem Phys. .
Free article

Abstract

Cyanopropyne, CH3-C[triple bond, length as m-dash]C-CN, is a simple molecule whose photochemistry is still unexplored. Here we investigate the UV photolysis of this astrophysically significant nitrile trapped in solid argon. The FTIR study was assisted with 15N-isotopic substitution data and with DFT-level computations including the analyses of ground- and excited-state potential energy surfaces. Cyanopropyne was found to decay mainly via a two-step isomerization process. Infrared absorption spectra evolved to show signals from allenyl cyanide, CH2[double bond, length as m-dash]C[double bond, length as m-dash]CH-CN, which then further convert into propargyl cyanide, H-C[triple bond, length as m-dash]C-CH2-CN. Some evidence for the presence of allenyl isocyanide, propargyl isocyanide, 3-cyanocyclopropene, and 1,2,3-butatrien-1-imine under particular experimental conditions was also observed. Although cyano/isocyano interconversion has been observed during photolysis of other closely related species in solid argon matrices, including H-C[triple bond, length as m-dash]C-CN, no evidence could be found for production of 1-isocyano-1-propyne, CH3-C[triple bond, length as m-dash]C-NC for these experiments.

PubMed Disclaimer